当前位置: X-MOL 学术Nat. Hum. Behav. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Quantifying the use and potential benefits of artificial intelligence in scientific research
Nature Human Behaviour ( IF 21.4 ) Pub Date : 2024-10-11 , DOI: 10.1038/s41562-024-02020-5
Jian Gao, Dashun Wang

The rapid advancement of artificial intelligence (AI) is poised to reshape almost every line of work. Despite enormous efforts devoted to understanding AI’s economic impacts, we lack a systematic understanding of the benefits to scientific research associated with the use of AI. Here we develop a measurement framework to estimate the direct use of AI and associated benefits in science. We find that the use and benefits of AI appear widespread throughout the sciences, growing especially rapidly since 2015. However, there is a substantial gap between AI education and its application in research, highlighting a misalignment between AI expertise supply and demand. Our analysis also reveals demographic disparities, with disciplines with higher proportions of women or Black scientists reaping fewer benefits from AI, potentially exacerbating existing inequalities in science. These findings have implications for the equity and sustainability of the research enterprise, especially as the integration of AI with science continues to deepen.



中文翻译:


量化人工智能在科学研究中的应用和潜在好处



人工智能 (AI) 的快速发展几乎将重塑每个工作领域。尽管我们付出了巨大的努力来了解 AI 的经济影响,但我们缺乏对使用 AI 对科学研究的好处的系统理解。在这里,我们开发了一个测量框架来估计人工智能的直接使用和相关在科学中的相关好处。我们发现,人工智能的使用和好处似乎在整个科学领域都很普遍,自 2015 年以来增长尤其迅速。然而,人工智能教育与其在研究中的应用之间存在巨大差距,凸显了人工智能专业知识供需之间的错位。我们的分析还揭示了人口差异,女性比例较高的学科或黑人科学家从 AI 中获得的好处较少,这可能会加剧科学界现有的不平等。这些发现对研究企业的公平性和可持续性具有影响,尤其是在 AI 与科学的整合不断加深的情况下。

更新日期:2024-10-11
down
wechat
bug