当前位置: X-MOL 学术Remote Sens. Environ. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Avian diversity across guilds in North America versus vegetation structure as measured by the Global Ecosystem Dynamics Investigation (GEDI)
Remote Sensing of Environment ( IF 11.1 ) Pub Date : 2024-10-10 , DOI: 10.1016/j.rse.2024.114446
Jin Xu, Laura Farwell, Volker C. Radeloff, David Luther, Melissa Songer, William Justin Cooper, Qiongyu Huang

Avian diversity, a key indicator of ecosystem health, is closely related to canopy structure. Most avian diversity models are based on either optical remote sensing or airborne lidar data, but the latter is limited to small study areas. The launch of the Global Ecosystem Dynamics Investigation (GEDI) instrument in 2018 has opened new avenues for exploring the influence of vegetation structure on avian diversity. To examine how direct measurements of canopy structural characteristics explain bird diversity across North America, we analyzed 18 GEDI metrics from 2019 to 2022, along with corresponding Breeding Bird Survey (BBS) counts and AVONET morphological data, analyzing effects across broad regions and at varying spatial extents. We grouped 440 bird species into 20 ecological guilds under six guild categories and employed random forest algorithms to model avian diversity across eight spatial extents (1, 2, 3, 4, 5, 10, 20, and 39.2 km). The models predicted six diversity indices, including species richness (sRich), functional richness (fRich), evenness (fEve), dispersion (fDis), divergence (fDiv), and redundancy (fRed) across eight spatial extents. The best-predicted guilds varied for each diversity index. The most accurate models were sRich (pseudo-R2 = 0.71, RMSE = 4.28) and fRed (pseudo-R2 = 0.60, RMSE = 0.13) for forest specialists guilds; fRich (pseudo-R2 = 0.55, RMSE = 0.18) for urban guilds; fEve (pseudo-R2 = 0.28, RMSE = 0.08) for insectivore guilds; and fDiv (pseudo-R2 = 0.38, RMSE = 0.12) and fDis (pseudo-R2 = 0.53, RMSE = 0.87) for short distance migrants guilds. Our results highlight the critical role of canopy structure, including its horizontal and vertical distribution and variation, in predicting avian diversity, as measured by the mean number of detected modes (num_detectedmodes), the standard deviation of foliage height diversity (FHD), num_detectedmodes, canopy cover, and plant area index (PAI) across the spatial extents centered on BBS routes. Therefore, we recommend incorporating the GEDI metrics into avian diversity modeling and mapping across North America, thereby potentially enhancing bird habitat management and conservation efforts.

中文翻译:


全球生态系统动态调查 (GEDI) 测量的北美行会的鸟类多样性与植被结构



鸟类多样性是生态系统健康的关键指标,与冠层结构密切相关。大多数鸟类多样性模型都基于光学遥感或机载激光雷达数据,但后者仅限于较小的研究区域。2018 年启动的全球生态系统动态调查 (GEDI) 工具为探索植被结构对鸟类多样性的影响开辟了新的途径。为了研究冠层结构特征的直接测量如何解释北美鸟类多样性,我们分析了 2019 年至 2022 年的 18 个 GEDI 指标,以及相应的繁殖鸟类调查 (BBS) 计数和 AVONET 形态学数据,分析了跨广泛区域和不同空间范围的影响。我们将 440 种鸟类分为 6 个行会类别下的 20 个生态行会,并采用随机森林算法对 8 个空间范围(1、2、3、4、5、10、20 和 39.2 公里)的鸟类多样性进行建模。这些模型预测了六个多样性指数,包括八个空间范围内的物种丰富度 (sRich)、功能丰富度 (fRich)、均匀度 (fEve)、离散度 (fDis)、散度 (fDiv) 和冗余度 (fRed)。每个多样性指数的最佳预测公会都不同。对于森林专家行会,最准确的模型是 sRich(伪 R2 = 0.71,RMSE = 4.28)和 fRed(伪 R2 = 0.60,RMSE = 0.13);城市行会的 fRich(伪 R2 = 0.55,RMSE = 0.18);fEve (pseudo-R2 = 0.28, RMSE = 0.08) 用于食虫动物公会;以及短距离移民行会的 fDiv (pseudo-R2 = 0.38, RMSE = 0.12) 和 fDis (pseudo-R2 = 0.53, RMSE = 0.87)。 我们的结果强调了冠层结构的关键作用,包括其水平和垂直分布和变化,在预测鸟类多样性方面,通过检测到的平均模态数 (num_detectedmodes)、叶子高度多样性 (FHD) 的标准差、num_detectedmodes、冠层覆盖和植物面积指数 (PAI) 在以 BBS 路线为中心的空间范围内。因此,我们建议将 GEDI 指标纳入整个北美的鸟类多样性建模和绘图中,从而有可能加强鸟类栖息地管理和保护工作。
更新日期:2024-10-10
down
wechat
bug