当前位置:
X-MOL 学术
›
Mater. Today Phys.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
CoFe2O4-BaTiO3 core-shell-embedded flexible polymer composite as an efficient magnetoelectric energy harvester
Materials Today Physics ( IF 10.0 ) Pub Date : 2024-10-10 , DOI: 10.1016/j.mtphys.2024.101567 Bitna Bae, Nagamalleswara Rao Alluri, Cheol Min Kim, Jungho Ryu, Gwang Hyeon Kim, Hyeon Jun Park, Changyeon Baek, Min-Ku Lee, Gyoung-Ja Lee, Geon-Tae Hwang, Kwi-Il Park
Materials Today Physics ( IF 10.0 ) Pub Date : 2024-10-10 , DOI: 10.1016/j.mtphys.2024.101567 Bitna Bae, Nagamalleswara Rao Alluri, Cheol Min Kim, Jungho Ryu, Gwang Hyeon Kim, Hyeon Jun Park, Changyeon Baek, Min-Ku Lee, Gyoung-Ja Lee, Geon-Tae Hwang, Kwi-Il Park
Flexible magnetoelectric (ME) generators gained immense interest due to the broad applications in wearable and Internet of Things (IoT)-based devices. The key to achieving high energy conversion performance of 0–3 type ME composite films is the prevention of filler aggregation in the polymer matrix and accessing the full potential of intrinsic properties of filler. To achieve high performance, a flexible ME composite film was fabricated by homogeneous distribution of magnetostrictive CoFe2 O4 -BaTiO3 core-shell (CBCS) fillers into piezoelectric polyvinylidene fluoride (PVDF) polymer. The ME composite film generates an enhanced energy conversion efficiency by optimizing the shell thickness of CBCS and maximizing the electroactive β-phase at the BaTiO3 shell-PVDF interfacial region. The observed ME coefficient of the film reached up to 710 mV/cm∙Oe. Multiphysics simulations based on the finite element analysis were adopted to investigate the role of BaTiO3 shell thickness on the performance of ME film. This study paves the way to achieve higher filler loading content in the ME composite films to develop an efficient, flexible ME generator for eco-friendly permanent power sources.
中文翻译:
CoFe2O4-BaTiO3 核壳嵌入柔性聚合物复合材料作为高效磁电能量收集器
由于柔性磁电 (ME) 发电机在可穿戴设备和基于物联网 (IoT) 的设备中的广泛应用而引起了极大的兴趣。实现 0-3 型 ME 复合薄膜高能量转换性能的关键是防止填料在聚合物基体中聚集,并充分发挥填料固有特性的潜力。为了实现高性能,通过将磁致伸缩 CoFe2O4-BaTiO3 核壳 (CBCS) 填料均匀分布到压电聚偏二氟乙烯 (PVDF) 聚合物中,制备了柔性 ME 复合膜。ME 复合膜通过优化 CBCS 的壳厚度并最大化 BaTiO3 壳-PVDF 界面区域的电活性 β 相来产生增强的能量转换效率。观察到的薄膜 ME 系数高达 710 mV/cm∙Oe。采用基于有限元分析的多物理场仿真研究了 BaTiO3 壳层厚度对 ME 薄膜性能的影响。本研究为在 ME 复合薄膜中实现更高的填料负载量铺平了道路,以开发一种用于环保永久电源的高效、灵活的 ME 发生器。
更新日期:2024-10-10
中文翻译:
CoFe2O4-BaTiO3 核壳嵌入柔性聚合物复合材料作为高效磁电能量收集器
由于柔性磁电 (ME) 发电机在可穿戴设备和基于物联网 (IoT) 的设备中的广泛应用而引起了极大的兴趣。实现 0-3 型 ME 复合薄膜高能量转换性能的关键是防止填料在聚合物基体中聚集,并充分发挥填料固有特性的潜力。为了实现高性能,通过将磁致伸缩 CoFe2O4-BaTiO3 核壳 (CBCS) 填料均匀分布到压电聚偏二氟乙烯 (PVDF) 聚合物中,制备了柔性 ME 复合膜。ME 复合膜通过优化 CBCS 的壳厚度并最大化 BaTiO3 壳-PVDF 界面区域的电活性 β 相来产生增强的能量转换效率。观察到的薄膜 ME 系数高达 710 mV/cm∙Oe。采用基于有限元分析的多物理场仿真研究了 BaTiO3 壳层厚度对 ME 薄膜性能的影响。本研究为在 ME 复合薄膜中实现更高的填料负载量铺平了道路,以开发一种用于环保永久电源的高效、灵活的 ME 发生器。