当前位置:
X-MOL 学术
›
Appl. Phys. Rev.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Inhibiting the current spikes within the channel layer of LiCoO2-based three-terminal synaptic transistors
Applied Physics Reviews ( IF 11.9 ) Pub Date : 2024-10-09 , DOI: 10.1063/5.0200811 Yue Chen, Weijian Zhang, Yuezhen Lu, Minzhen Chen, Jing Chen, Hongyi Lu, Yubiao Niu, Guiying Zhao, Jianming Tao, Jiaxin Li, Yingbin Lin, Oleg Kolosov, Zhigao Huang
Applied Physics Reviews ( IF 11.9 ) Pub Date : 2024-10-09 , DOI: 10.1063/5.0200811 Yue Chen, Weijian Zhang, Yuezhen Lu, Minzhen Chen, Jing Chen, Hongyi Lu, Yubiao Niu, Guiying Zhao, Jianming Tao, Jiaxin Li, Yingbin Lin, Oleg Kolosov, Zhigao Huang
Synaptic transistors, which emulate the behavior of biological synapses, play a vital role in information processing and storage in neuromorphic systems. However, the occurrence of excessive current spikes during the updating of synaptic weight poses challenges to the stability, accuracy, and power consumption of synaptic transistors. In this work, we experimentally investigate the main factors for the generation of current spikes in the three-terminal synaptic transistors that use LiCoO2 (LCO), a mixed ionic-electronic conductor, as the channel layer. Kelvin probe force microscopy and impedance testing results reveal that ion migration and adsorption at the drain–source-channel interface cause the current spikes that compromise the device's performance. By controlling the crystal orientation of the LCO channel layer to impede the in-plane migration of lithium ions, we show that the LCO channel layer with the (104) preferred orientation can effectively suppress both the peak current and power consumption in the synaptic transistors. Our study provides a unique insight into controlling the crystallographic orientation for the design of high-speed, high-robustness, and low-power consumption nano-memristor devices.
中文翻译:
抑制基于 LiCoO2 的三端突触晶体管通道层内的电流尖峰
模拟生物突触行为的突触晶体管在神经形态系统的信息处理和存储中起着至关重要的作用。然而,在突触权重更新过程中出现的过大电流尖峰对突触晶体管的稳定性、精度和功耗提出了挑战。在这项工作中,我们实验研究了使用 LiCoO2 (LCO)(一种混合离子电子导体)作为通道层的三端突触晶体管中产生电流尖峰的主要因素。开尔文探针力显微镜和阻抗测试结果表明,漏极-源极-通道界面处的离子迁移和吸附会导致电流尖峰,从而影响器件的性能。通过控制 LCO 通道层的晶体取向以阻止锂离子的面内迁移,我们表明具有 (104) 择优取向的 LCO 通道层可以有效抑制突触晶体管中的峰值电流和功耗。我们的研究为控制晶体取向设计高速、高鲁棒性和低功耗纳米忆阻器器件提供了独特的见解。
更新日期:2024-10-09
中文翻译:
抑制基于 LiCoO2 的三端突触晶体管通道层内的电流尖峰
模拟生物突触行为的突触晶体管在神经形态系统的信息处理和存储中起着至关重要的作用。然而,在突触权重更新过程中出现的过大电流尖峰对突触晶体管的稳定性、精度和功耗提出了挑战。在这项工作中,我们实验研究了使用 LiCoO2 (LCO)(一种混合离子电子导体)作为通道层的三端突触晶体管中产生电流尖峰的主要因素。开尔文探针力显微镜和阻抗测试结果表明,漏极-源极-通道界面处的离子迁移和吸附会导致电流尖峰,从而影响器件的性能。通过控制 LCO 通道层的晶体取向以阻止锂离子的面内迁移,我们表明具有 (104) 择优取向的 LCO 通道层可以有效抑制突触晶体管中的峰值电流和功耗。我们的研究为控制晶体取向设计高速、高鲁棒性和低功耗纳米忆阻器器件提供了独特的见解。