当前位置:
X-MOL 学术
›
Annu. Rev. Stat. Appl.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Reproducibility in the Classroom
Annual Review of Statistics and Its Application ( IF 7.4 ) Pub Date : 2024-10-09 , DOI: 10.1146/annurev-statistics-112723-034436 Mine Dogucu
Annual Review of Statistics and Its Application ( IF 7.4 ) Pub Date : 2024-10-09 , DOI: 10.1146/annurev-statistics-112723-034436 Mine Dogucu
Difficulties in reproducing results from scientific studies have lately been referred to as a reproducibility crisis. Scientific practice depends heavily on scientific training. What gets taught in the classroom is often practiced in labs, fields, and data analysis. The importance of reproducibility in the classroom has gained momentum in statistics education in recent years. In this article, we review the existing literature on reproducibility education. We delve into the relationship between computing tools and reproducibility through visiting historical developments in this area. We share examples for teaching reproducibility and reproducible teaching while discussing the pedagogical opportunities created by these examples as well as challenges that the instructors should be aware of. We detail the use of teaching reproducibility and reproducible teaching practices in an introductory data science course. Lastly, we provide recommendations on reproducibility education for instructors, administrators, and other members of the scientific community.
中文翻译:
课堂上的可重复性
难以重现科学研究结果最近被称为可重复性危机。科学实践在很大程度上依赖于科学培训。课堂上教授的内容通常在实验室、田野和数据分析中得到实践。近年来,在统计教育中,可重复性的重要性得到了增强。在本文中,我们回顾了关于可重复性教育的现有文献。我们通过访问该领域的历史发展来深入研究计算工具和可重复性之间的关系。我们分享了教学可重复性和可再现教学的示例,同时讨论了这些示例创造的教学机会以及教师应注意的挑战。我们在数据科学入门课程中详细介绍了教学可重复性和可再现教学实践的使用。最后,我们为教师、管理人员和科学界的其他成员提供有关可重复性教育的建议。
更新日期:2024-10-09
中文翻译:
课堂上的可重复性
难以重现科学研究结果最近被称为可重复性危机。科学实践在很大程度上依赖于科学培训。课堂上教授的内容通常在实验室、田野和数据分析中得到实践。近年来,在统计教育中,可重复性的重要性得到了增强。在本文中,我们回顾了关于可重复性教育的现有文献。我们通过访问该领域的历史发展来深入研究计算工具和可重复性之间的关系。我们分享了教学可重复性和可再现教学的示例,同时讨论了这些示例创造的教学机会以及教师应注意的挑战。我们在数据科学入门课程中详细介绍了教学可重复性和可再现教学实践的使用。最后,我们为教师、管理人员和科学界的其他成员提供有关可重复性教育的建议。