Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Rainfall events and daily mortality across 645 global locations: two stage time series analysis
The BMJ ( IF 93.6 ) Pub Date : 2024-10-09 , DOI: 10.1136/bmj-2024-080944 Cheng He, Susanne Breitner-Busch, Veronika Huber, Kai Chen, Siqi Zhang, Antonio Gasparrini, Michelle Bell, Haidong Kan, Dominic Royé, Ben Armstrong, Joel Schwartz, Francesco Sera, Ana Maria Vicedo-Cabrera, Yasushi Honda, Jouni J K Jaakkola, Niilo Ryti, Jan Kyselý, Yuming Guo, Shilu Tong, Francesca de’Donato, Paola Michelozzi, Micheline de Sousa Zanotti Stagliorio Coelho, Paulo Hilario Nascimento Saldiva, Eric Lavigne, Hans Orru, Ene Indermitte, Mathilde Pascal, Patrick Goodman, Ariana Zeka, Yoonhee Kim, Magali Hurtado Diaz, Eunice Elizabeth Félix Arellano, Ala Overcenco, Jochem Klompmaker, Shilpa Rao, Alfonso Diz-Lois Palomares, Gabriel Carrasco, Xerxes Seposo, Susana das Neves Pereira da Silva, Joana Madureira, Iulian-Horia Holobaca, Noah Scovronick, Fiorella Acquaotta, Ho Kim, Whanhee Lee, Masahiro Hashizume, Aurelio Tobias, Carmen Íñiguez, Bertil Forsberg, Martina S Ragettli, Yue Leon Guo, Shih-Chun Pan, Samuel Osorio, Shanshan Li, Antonella Zanobetti, Tran Ngoc Dang, Do Van Dung, Alexandra Schneider
The BMJ ( IF 93.6 ) Pub Date : 2024-10-09 , DOI: 10.1136/bmj-2024-080944 Cheng He, Susanne Breitner-Busch, Veronika Huber, Kai Chen, Siqi Zhang, Antonio Gasparrini, Michelle Bell, Haidong Kan, Dominic Royé, Ben Armstrong, Joel Schwartz, Francesco Sera, Ana Maria Vicedo-Cabrera, Yasushi Honda, Jouni J K Jaakkola, Niilo Ryti, Jan Kyselý, Yuming Guo, Shilu Tong, Francesca de’Donato, Paola Michelozzi, Micheline de Sousa Zanotti Stagliorio Coelho, Paulo Hilario Nascimento Saldiva, Eric Lavigne, Hans Orru, Ene Indermitte, Mathilde Pascal, Patrick Goodman, Ariana Zeka, Yoonhee Kim, Magali Hurtado Diaz, Eunice Elizabeth Félix Arellano, Ala Overcenco, Jochem Klompmaker, Shilpa Rao, Alfonso Diz-Lois Palomares, Gabriel Carrasco, Xerxes Seposo, Susana das Neves Pereira da Silva, Joana Madureira, Iulian-Horia Holobaca, Noah Scovronick, Fiorella Acquaotta, Ho Kim, Whanhee Lee, Masahiro Hashizume, Aurelio Tobias, Carmen Íñiguez, Bertil Forsberg, Martina S Ragettli, Yue Leon Guo, Shih-Chun Pan, Samuel Osorio, Shanshan Li, Antonella Zanobetti, Tran Ngoc Dang, Do Van Dung, Alexandra Schneider
Objective To examine the associations between characteristics of daily rainfall (intensity, duration, and frequency) and all cause, cardiovascular, and respiratory mortality. Design Two stage time series analysis. Setting 645 locations across 34 countries or regions. Population Daily mortality data, comprising a total of 109 954 744 all cause, 31 164 161 cardiovascular, and 11 817 278 respiratory deaths from 1980 to 2020. Main outcome measure Association between daily mortality and rainfall events with return periods (the expected average time between occurrences of an extreme event of a certain magnitude) of one year, two years, and five years, with a 14 day lag period. A continuous relative intensity index was used to generate intensity-response curves to estimate mortality risks at a global scale. Results During the study period, a total of 50 913 rainfall events with a one year return period, 8362 events with a two year return period, and 3301 events with a five year return period were identified. A day of extreme rainfall with a five year return period was significantly associated with increased daily all cause, cardiovascular, and respiratory mortality, with cumulative relative risks across 0-14 lag days of 1.08 (95% confidence interval 1.05 to 1.11), 1.05 (1.02 to 1.08), and 1.29 (1.19 to 1.39), respectively. Rainfall events with a two year return period were associated with respiratory mortality only, whereas no significant associations were found for events with a one year return period. Non-linear analysis revealed protective effects (relative risk <1) with moderate-heavy rainfall events, shifting to adverse effects (relative risk >1) with extreme intensities. Additionally, mortality risks from extreme rainfall events appeared to be modified by climate type, baseline variability in rainfall, and vegetation coverage, whereas the moderating effects of population density and income level were not significant. Locations with lower variability of baseline rainfall or scarce vegetation coverage showed higher risks. Conclusion Daily rainfall intensity is associated with varying health effects, with extreme events linked to an increasing relative risk for all cause, cardiovascular, and respiratory mortality. The observed associations varied with local climate and urban infrastructure. Health outcome data have been collected within the MCC (Multi-Country Multi-City) Collaborative Research Network ( ) under a data sharing agreement and cannot be made publicly available. Researchers can refer to MCC participants listed as coauthors for information on accessing the data for each country. The time series rainfall data from ERA5-Land, MSWEP, and IMERG are publicly accessible from their respective websites (; ; [https://disc.gsfc.nasa.gov/datasets/GPM\_3IMERGHHL\_06/summary][1]) [1]: https://disc.gsfc.nasa.gov/datasets/GPM_3IMERGHHL_06/summary
中文翻译:
全球 645 个地点的降雨事件和每日死亡率:两阶段时间序列分析
目的 探讨日降雨特征 (强度、持续时间和频率) 与所有原因、心血管和呼吸系统死亡率之间的关联。设计 两阶段时间序列分析。在 34 个国家或地区设置 645 个地点。人口 每日死亡率数据,包括 1980 年至 2020 年共 109 954 744 例全因死亡、31 164 161 例心血管死亡和 11 817 278 例呼吸系统死亡。主要结局指标 每日死亡率和降雨事件之间的关联,重现期(一定量级极端事件发生之间的预期平均时间)为 1 年、2 年和 5 年,滞后期为 14 天。使用连续相对强度指数生成强度-响应曲线,以估计全球范围内的死亡风险。结果 在研究期间,共确定了 50 913 起重现期为 1 年的降雨事件,8362 起重现期为 2 年的降雨事件,以及 3301 起重现期为 5 年的降雨事件。具有五年重现期的极端降雨日与每日全因死亡率、心血管死亡率和呼吸系统死亡率增加显著相关,0-14 个滞后天的累积相对风险分别为 1.08(95% 置信区间 1.05 至 1.11)、1.05(1.02 至 1.08)和 1.29(1.19 至 1.39)。重现期为 2 年的降雨事件仅与呼吸系统死亡率相关,而重现期为 1 年的事件未发现显著关联。非线性分析显示,中强降雨事件具有保护作用(相对风险 <1),转变为极端强度的不利影响(相对风险 >1)。 此外,极端降雨事件的死亡风险似乎受到气候类型、降雨基线变化和植被覆盖率的影响,而人口密度和收入水平的调节作用并不显著。基线降雨量变化较小或植被覆盖率稀少的位置显示出更高的风险。结论 每日降雨强度与不同的健康影响相关,极端事件与全因、心血管和呼吸系统死亡率的相对风险增加有关。观察到的关联因当地气候和城市基础设施而异。健康结果数据是根据数据共享协议在 MCC(多国多城市)合作研究网络 () 内收集的,不能公开提供。研究人员可以参考列为合著者的 MCC 参与者,以获取有关访问每个国家/地区数据的信息。来自 ERA5-Land、MSWEP 和 IMERG 的时间序列降雨数据可从各自的网站公开访问 (;[https://disc.gsfc.nasa.gov/datasets/GPM\_3IMERGHHL\_06/摘要][1]) [1]: https://disc.gsfc.nasa.gov/datasets/GPM_3IMERGHHL_06/summary
更新日期:2024-10-10
中文翻译:
全球 645 个地点的降雨事件和每日死亡率:两阶段时间序列分析
目的 探讨日降雨特征 (强度、持续时间和频率) 与所有原因、心血管和呼吸系统死亡率之间的关联。设计 两阶段时间序列分析。在 34 个国家或地区设置 645 个地点。人口 每日死亡率数据,包括 1980 年至 2020 年共 109 954 744 例全因死亡、31 164 161 例心血管死亡和 11 817 278 例呼吸系统死亡。主要结局指标 每日死亡率和降雨事件之间的关联,重现期(一定量级极端事件发生之间的预期平均时间)为 1 年、2 年和 5 年,滞后期为 14 天。使用连续相对强度指数生成强度-响应曲线,以估计全球范围内的死亡风险。结果 在研究期间,共确定了 50 913 起重现期为 1 年的降雨事件,8362 起重现期为 2 年的降雨事件,以及 3301 起重现期为 5 年的降雨事件。具有五年重现期的极端降雨日与每日全因死亡率、心血管死亡率和呼吸系统死亡率增加显著相关,0-14 个滞后天的累积相对风险分别为 1.08(95% 置信区间 1.05 至 1.11)、1.05(1.02 至 1.08)和 1.29(1.19 至 1.39)。重现期为 2 年的降雨事件仅与呼吸系统死亡率相关,而重现期为 1 年的事件未发现显著关联。非线性分析显示,中强降雨事件具有保护作用(相对风险 <1),转变为极端强度的不利影响(相对风险 >1)。 此外,极端降雨事件的死亡风险似乎受到气候类型、降雨基线变化和植被覆盖率的影响,而人口密度和收入水平的调节作用并不显著。基线降雨量变化较小或植被覆盖率稀少的位置显示出更高的风险。结论 每日降雨强度与不同的健康影响相关,极端事件与全因、心血管和呼吸系统死亡率的相对风险增加有关。观察到的关联因当地气候和城市基础设施而异。健康结果数据是根据数据共享协议在 MCC(多国多城市)合作研究网络 () 内收集的,不能公开提供。研究人员可以参考列为合著者的 MCC 参与者,以获取有关访问每个国家/地区数据的信息。来自 ERA5-Land、MSWEP 和 IMERG 的时间序列降雨数据可从各自的网站公开访问 (;[https://disc.gsfc.nasa.gov/datasets/GPM\_3IMERGHHL\_06/摘要][1]) [1]: https://disc.gsfc.nasa.gov/datasets/GPM_3IMERGHHL_06/summary