Geometric and Functional Analysis ( IF 2.4 ) Pub Date : 2024-10-10 , DOI: 10.1007/s00039-024-00695-6 V. Kaloshin, C. E. Koudjinan, Ke Zhang
In this paper we prove a perturbative version of a remarkable Bialy–Mironov (Ann. Math. 196(1):389–413, 2022) result. They prove non perturbative Birkhoff conjecture for centrally-symmetric convex domains, namely, a centrally-symmetric convex domain with integrable billiard is ellipse. We combine techniques from Bialy–Mironov (Ann. Math. 196(1):389–413, 2022) with a local result by Kaloshin–Sorrentino (Ann. Math. 188(1):315–380, 2018) and show that a domain close enough to a centrally symmetric one with integrable billiard is ellipse. To combine these results we derive a slight extension of Bialy–Mironov (Ann. Math. 196(1):389–413, 2022) by proving that a notion of rational integrability is equivalent to the C0-integrability condition used in their paper.
中文翻译:
近中心对称域的 Birkhoff 猜想
在本文中,我们证明了一个非凡的 Bialy-Mironov (Ann. Math. 196(1):389–413, 2022) 结果的扰动版本。他们证明了中心对称凸域的非扰动 Birkhoff 猜想,即具有可积台球的中心对称凸域是椭圆。我们将 Bialy-Mironov 的技术 (Ann. Math. 196(1):389–413, 2022) 与 Kaloshin-Sorrentino 的局部结果 (Ann. Math. 188(1):315–380, 2018) 相结合,并表明一个足够接近具有可积台球的中心对称域是椭圆。为了结合这些结果,我们通过证明有理可积性的概念等同于他们论文中使用的 C0-可积性条件,得出了 Bialy-Mironov (Ann. Math. 196(1):389–413, 2022) 的轻微扩展。