International Journal of Numerical Methods for Heat & Fluid Flow ( IF 4.0 ) Pub Date : 2024-10-11 , DOI: 10.1108/hff-06-2024-0453 Aakash Kumar, Suraj Goyal
Purpose
This study aims to investigate time-harmonic wave propagation in a chiral porous thermoelastic solid under strain gradient theory (SGT), focusing on identifying and characterizing distinct wave modes within the medium.
Design/methodology/approach
Using Iesan's gradient theory, which incorporates chiral effects and accommodates second sound phenomena, the authors derive mathematical formulations for the velocities and attenuations of eight propagating waves: four dilatational waves and two pairs of coupled shear waves (one left circularly polarized, the other right). Numerical simulations are performed for a specific model, exploring the influence of various parameters on wave propagation.
Findings
The authors establish that the medium supports four dilatational waves, including a microstretch-associated wave, and four shear waves, distinguished by their chiral-induced characteristics. The results highlight the frequency-dependent dispersive nature of all propagating waves and establish connections with existing theoretical frameworks, demonstrating the broader applicability of our findings.
Practical implications
The characteristics of wave propagation in chiral media examined here can enhance our understanding of chiral medium behavior. This knowledge is crucial for developing materials with pronounced chiral effects, surpassing those found in natural chiral materials like bone, quartz, sugar and wood. Advances in artificial chiral materials are driven by their superior toughness, durability and other beneficial properties. Consequently, this study has potential applications across various fields, including the design of chiral broadband absorbers and filters, the production of artificial bones and medical devices, aeronautical engineering and beyond.
Originality/value
This research extends existing theories and deepens the understanding by exploring wave behaviors in chiral media, advancing this emerging field.
中文翻译:
应变梯度理论下手性多孔热弹性介质中的平面膨胀波和剪切波
目的
本研究旨在研究应变梯度理论 (SGT) 下手性多孔热弹性固体中的时谐波传播,重点是识别和表征介质内的不同波模式。
设计/方法/方法
使用 Iesan 的梯度理论,该理论结合了手性效应并容纳了第二声音现象,作者推导出了八个传播波的速度和衰减的数学公式:四个膨胀波和两对耦合剪切波(一个左圆极化,另一个右)。对特定模型进行数值仿真,探索各种参数对波传播的影响。
发现
作者确定该介质支持四种膨胀波,包括一个微拉伸相关波和四种剪切波,以其手性诱导特性而著称。结果突出了所有传播波的频率依赖性色散性质,并与现有理论框架建立了联系,证明了我们研究结果的更广泛适用性。
实际意义
这里研究的波在手性介质中传播的特性可以增强我们对手性介质行为的理解。这些知识对于开发具有明显手性效应的材料至关重要,其作用超过了骨、石英、糖和木材等天然手性材料中的材料。人造手性材料的进步是由其卓越的韧性、耐用性和其他有益特性推动的。因此,这项研究在各个领域都有潜在的应用,包括手性宽带吸收器和过滤器的设计、人造骨骼和医疗设备的生产、航空工程等。
原创性/价值
这项研究通过探索手性介质中的波行为,扩展了现有理论并加深了理解,从而推动了这一新兴领域的发展。