当前位置:
X-MOL 学术
›
JAMA Psychiatry
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Deconstructing Cognitive Impairment in Psychosis With a Machine Learning Approach
JAMA Psychiatry ( IF 22.5 ) Pub Date : 2024-10-09 , DOI: 10.1001/jamapsychiatry.2024.3062 Robert A. McCutcheon, Richard S. E. Keefe, Philip M. McGuire, Andre Marquand
JAMA Psychiatry ( IF 22.5 ) Pub Date : 2024-10-09 , DOI: 10.1001/jamapsychiatry.2024.3062 Robert A. McCutcheon, Richard S. E. Keefe, Philip M. McGuire, Andre Marquand
ImportanceCognitive functioning is associated with various factors, such as age, sex, education, and childhood adversity, and is impaired in people with psychosis. In addition to specific effects of the disorder, cognitive impairments may reflect a greater exposure to general risk factors for poor cognition.ObjectiveTo determine the extent that impairments in cognition in psychosis reflect risk factor exposures.Design, Setting, and ParticipantsThis cross-sectional study examined the relationship between exposures and cognitive function using data from the Bipolar-Schizophrenia Network on Intermediate Phenotypes studies 1 and 2 across 6 sites. Participants included healthy controls; patients with schizophrenia, schizoaffective disorder, or bipolar I disorder with psychosis; and relatives of patients. Predictive modeling was performed using extreme gradient boosting regression to train a composite cognitive score prediction model with nested cross-validation. Shapley additive explanations values were used to examine the relationship between exposures and cognitive function.ExposureExposures were chosen based on associations with cognition previously identified: age, sex, race and ethnicity, childhood adversity, education, parental education, parental socioeconomic status, parental age at birth, substance use, antipsychotic dose, and diagnosis.Main Outcomes and MeasuresCognition was assessed using the Brief Assessment of Cognition in Schizophrenia.ResultsA total of 3370 participants were included: 840 healthy controls, 709 patients with schizophrenia, 541 with schizoaffective disorder, 457 with bipolar I disorder with psychosis, and 823 relatives of patients. The mean (SD) age was 37.9 (13.3) years; 1887 were female (56%) and 1483 male (44%). The model predicted cognitive scores with high accuracy: out-of-sample Pearson correlation between predicted and observed cognitive composite score was r = 0.72 (SD = 0.03). Individuals with schizophrenia (z = −1.4), schizoaffective disorder (z = −1.2), and bipolar I disorder with psychosis (z = −0.5) all had significantly worse cognitive composite scores than controls. Factors other than diagnosis and medication accounted for much of this impairment (schizophrenia z = −0.73, schizoaffective disorder z = −0.64, bipolar I disorder with psychosis z = −0.13). Diagnosis accounted for a lesser proportion of this deficit (schizophrenia z = −0.29, schizoaffective disorder z = −0.15, bipolar I disorder with psychosis z = −0.13), and antipsychotic use accounted for a similar deficit across diagnostic groups (schizophrenia z = −0.37, schizoaffective disorder z = −0.33, bipolar I disorder with psychosis z = −0.26).Conclusions and RelevanceThis study found that transdiagnostic factors accounted for a meaningful share of the variance in cognitive functioning in psychosis. A significant proportion of the cognitive impairment in psychosis may reflect factors relevant to cognitive functioning in the general population. When considering interventions, a diagnosis-agnostic, symptom-targeted approach may therefore be appropriate.
中文翻译:
用机器学习方法解构精神病中的认知障碍
重要性认知功能与多种因素有关,例如年龄、性别、教育和童年逆境,并且在精神病患者中会受损。除了疾病的特定影响外,认知障碍可能反映出更多地暴露于认知不良的一般危险因素。目的确定精神病认知障碍反映风险因素暴露的程度。设计、设置和参与者这项横断面研究使用来自双相精神分裂症网络的数据检查了暴露与认知功能之间的关系 中间表型研究 1 和 2,跨越 6 个地点。参与者包括健康对照;患有精神分裂症、分裂情感障碍或伴有精神病的双相 I 型障碍患者;和患者的亲属。使用极端梯度提升回归进行预测建模,以训练具有嵌套交叉验证的复合认知分数预测模型。Shapley 加法解释值用于检查暴露与认知功能之间的关系。暴露暴露根据与先前确定的认知的关联来选择:年龄、性别、种族和民族、童年逆境、教育、父母教育、父母社会经济地位、父母出生年龄、物质使用、抗精神病药物剂量和诊断。主要结局和措施使用精神分裂症认知简要评估评估认知.结果共包括 3370 名参与者:840 名健康对照者,709 名精神分裂症患者,541 名分裂情感障碍患者,457 名双相 I 型障碍伴精神病,以及 823 名患者亲属。平均 (SD) 年龄为 37.9 (13.3) 岁;1887 例为女性 (56%),1483 例为男性 (44%)。 该模型预测认知分数的准确性很高:预测和观察到的认知综合分数之间的样本外 Pearson 相关性为 r = 0.72 (SD = 0.03)。患有精神分裂症 (z = -1.4)、分裂情感障碍 (z = -1.2) 和双相 I 型精神病 (z = -0.5) 的个体的认知综合评分都明显差于对照组。除诊断和药物治疗外,其他因素是造成这种损害的主要原因(精神分裂症 z = -0.73,分裂情感障碍 z = -0.64,双相情感障碍伴精神病 z = -0.13)。诊断占这种缺陷的比例较小(精神分裂症 z = -0.29,分裂情感障碍 z = -0.15,双相 I 型障碍伴精神病 z = -0.13),抗精神病药物的使用在诊断组中占相似的缺陷(精神分裂症 z = -0.37,分裂情感障碍 z = -0.33,双相 I 型障碍伴精神病 z = -0.26)。结论和相关性本研究发现,跨诊断因素在精神病认知功能方差中占有相当大的份额。精神病中认知障碍的很大一部分可能反映了与一般人群认知功能相关的因素。因此,在考虑干预时,与诊断无关、针对症状的方法可能是合适的。
更新日期:2024-10-09
中文翻译:
用机器学习方法解构精神病中的认知障碍
重要性认知功能与多种因素有关,例如年龄、性别、教育和童年逆境,并且在精神病患者中会受损。除了疾病的特定影响外,认知障碍可能反映出更多地暴露于认知不良的一般危险因素。目的确定精神病认知障碍反映风险因素暴露的程度。设计、设置和参与者这项横断面研究使用来自双相精神分裂症网络的数据检查了暴露与认知功能之间的关系 中间表型研究 1 和 2,跨越 6 个地点。参与者包括健康对照;患有精神分裂症、分裂情感障碍或伴有精神病的双相 I 型障碍患者;和患者的亲属。使用极端梯度提升回归进行预测建模,以训练具有嵌套交叉验证的复合认知分数预测模型。Shapley 加法解释值用于检查暴露与认知功能之间的关系。暴露暴露根据与先前确定的认知的关联来选择:年龄、性别、种族和民族、童年逆境、教育、父母教育、父母社会经济地位、父母出生年龄、物质使用、抗精神病药物剂量和诊断。主要结局和措施使用精神分裂症认知简要评估评估认知.结果共包括 3370 名参与者:840 名健康对照者,709 名精神分裂症患者,541 名分裂情感障碍患者,457 名双相 I 型障碍伴精神病,以及 823 名患者亲属。平均 (SD) 年龄为 37.9 (13.3) 岁;1887 例为女性 (56%),1483 例为男性 (44%)。 该模型预测认知分数的准确性很高:预测和观察到的认知综合分数之间的样本外 Pearson 相关性为 r = 0.72 (SD = 0.03)。患有精神分裂症 (z = -1.4)、分裂情感障碍 (z = -1.2) 和双相 I 型精神病 (z = -0.5) 的个体的认知综合评分都明显差于对照组。除诊断和药物治疗外,其他因素是造成这种损害的主要原因(精神分裂症 z = -0.73,分裂情感障碍 z = -0.64,双相情感障碍伴精神病 z = -0.13)。诊断占这种缺陷的比例较小(精神分裂症 z = -0.29,分裂情感障碍 z = -0.15,双相 I 型障碍伴精神病 z = -0.13),抗精神病药物的使用在诊断组中占相似的缺陷(精神分裂症 z = -0.37,分裂情感障碍 z = -0.33,双相 I 型障碍伴精神病 z = -0.26)。结论和相关性本研究发现,跨诊断因素在精神病认知功能方差中占有相当大的份额。精神病中认知障碍的很大一部分可能反映了与一般人群认知功能相关的因素。因此,在考虑干预时,与诊断无关、针对症状的方法可能是合适的。