当前位置:
X-MOL 学术
›
Acc. Chem. Res.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Activating Metal–Organic Cages by Incorporating Functional M(ImPhen)3 Metalloligands: From Structural Design to Applications
Accounts of Chemical Research ( IF 16.4 ) Pub Date : 2024-10-09 , DOI: 10.1021/acs.accounts.4c00467 Yu-Lin Lu, Ya-Ping Wang, Kai Wu, Mei Pan, Cheng-Yong Su
Accounts of Chemical Research ( IF 16.4 ) Pub Date : 2024-10-09 , DOI: 10.1021/acs.accounts.4c00467 Yu-Lin Lu, Ya-Ping Wang, Kai Wu, Mei Pan, Cheng-Yong Su
The emulation of ingenious biofunctions has been a research focus for several decades. Metal–organic cages (MOCs), as a type of discrete supramolecular assembly with well-defined shapes and cavities, have aroused great interest in chemists to imitate natural protein cages or enzymes. However, to genuinely achieve tailored functionalities or reactivities of enzymes, the design of cage structures combining both the confined microenvironment and the active site is a prerequisite. Therefore, the integration of functionalized motifs into MOCs is expected to provide a feasible approach to construct biofunctional confined nanospaces, which not only allows the modulation of cage properties for applications such as molecular recognition, transport, and catalysis but also creates unique microenvironments that promote enzymatic effects for special reactivities and selectivities, thereby providing a versatile platform to achieve exceptional biomimetic functions and beyond.
中文翻译:
通过掺入功能性 m(ImPhen)3 金属配体来活化金属-有机笼:从结构设计到应用
几十年来,巧妙生物功能的模拟一直是研究重点。金属-有机壳 (MOC) 作为一种具有明确形状和空腔的离散超分子组装体,引起了化学家模仿天然蛋白质壳或酶的极大兴趣。然而,为了真正实现酶的定制功能或反应性,结合受限微环境和活性位点的笼状结构的设计是先决条件。因此,将功能化基序整合到 MOC 中有望提供一种构建生物功能受限纳米空间的可行方法,这不仅可以为分子识别、运输和催化等应用调节笼特性,还可以创造独特的微环境,促进特殊反应性和选择性的酶效应,从而提供一个多功能平台来实现卓越的仿生功能及其他。
更新日期:2024-10-10
中文翻译:
通过掺入功能性 m(ImPhen)3 金属配体来活化金属-有机笼:从结构设计到应用
几十年来,巧妙生物功能的模拟一直是研究重点。金属-有机壳 (MOC) 作为一种具有明确形状和空腔的离散超分子组装体,引起了化学家模仿天然蛋白质壳或酶的极大兴趣。然而,为了真正实现酶的定制功能或反应性,结合受限微环境和活性位点的笼状结构的设计是先决条件。因此,将功能化基序整合到 MOC 中有望提供一种构建生物功能受限纳米空间的可行方法,这不仅可以为分子识别、运输和催化等应用调节笼特性,还可以创造独特的微环境,促进特殊反应性和选择性的酶效应,从而提供一个多功能平台来实现卓越的仿生功能及其他。