当前位置:
X-MOL 学术
›
IEEE Trans. Image Process.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Perception-Guided Quality Metric of 3D Point Clouds Using Hybrid Strategy
IEEE Transactions on Image Processing ( IF 10.8 ) Pub Date : 2024-10-07 , DOI: 10.1109/tip.2024.3468893 Yujie Zhang, Qi Yang, Yiling Xu, Shan Liu
IEEE Transactions on Image Processing ( IF 10.8 ) Pub Date : 2024-10-07 , DOI: 10.1109/tip.2024.3468893 Yujie Zhang, Qi Yang, Yiling Xu, Shan Liu
Full-reference point cloud quality assessment (FR-PCQA) aims to infer the quality of distorted point clouds with available references. Most of the existing FR-PCQA metrics ignore the fact that the human visual system (HVS) dynamically tackles visual information according to different distortion levels (i.e., distortion detection for high-quality samples and appearance perception for low-quality samples) and measure point cloud quality using unified features. To bridge the gap, in this paper, we propose a perception-guided hybrid metric (PHM) that adaptively leverages two visual strategies with respect to distortion degree to predict point cloud quality: to measure visible difference in high-quality samples, PHM takes into account the masking effect and employs texture complexity as an effective compensatory factor for absolute difference; on the other hand, PHM leverages spectral graph theory to evaluate appearance degradation in low-quality samples. Variations in geometric signals on graphs and changes in the spectral graph wavelet coefficients are utilized to characterize geometry and texture appearance degradation, respectively. Finally, the results obtained from the two components are combined in a non-linear method to produce an overall quality score of the tested point cloud. The results of the experiment on five independent databases show that PHM achieves state-of-the-art (SOTA) performance and offers significant performance improvement in multiple distortion environments. The code is publicly available at https://github.com/zhangyujie-1998/PHM
.
中文翻译:
使用混合策略的 3D 点云的感知引导质量指标
全参考点云质量评估 (FR-PCQA) 旨在通过可用参考推断变形点云的质量。大多数现有的 FR-PCQA 指标都忽略了这样一个事实,即人类视觉系统 (HVS) 根据不同的失真水平(即高质量样本的失真检测和低质量样本的外观感知)动态处理视觉信息,并使用统一特征测量点云质量。为了弥合差距,在本文中,我们提出了一种感知引导的混合度量 (PHM),它自适应地利用两种关于失真程度的视觉策略来预测点云质量:为了测量高质量样本中的可见差异,PHM 考虑了掩蔽效应,并采用纹理复杂性作为绝对差异的有效补偿因子;另一方面,PHM 利用光谱图理论来评估低质量样品的外观退化。图形上几何信号的变化和光谱图小波系数的变化分别用于表征几何形状和纹理外观的退化。最后,将两个分量获得的结果以非线性方法组合,以生成测试点云的总体质量得分。在五个独立数据库上的实验结果表明,PHM 实现了最先进的 (SOTA) 性能,并在多种失真环境中提供了显着的性能改进。该代码在 https://github.com/zhangyujie-1998/PHM 上公开提供。
更新日期:2024-10-07
中文翻译:
使用混合策略的 3D 点云的感知引导质量指标
全参考点云质量评估 (FR-PCQA) 旨在通过可用参考推断变形点云的质量。大多数现有的 FR-PCQA 指标都忽略了这样一个事实,即人类视觉系统 (HVS) 根据不同的失真水平(即高质量样本的失真检测和低质量样本的外观感知)动态处理视觉信息,并使用统一特征测量点云质量。为了弥合差距,在本文中,我们提出了一种感知引导的混合度量 (PHM),它自适应地利用两种关于失真程度的视觉策略来预测点云质量:为了测量高质量样本中的可见差异,PHM 考虑了掩蔽效应,并采用纹理复杂性作为绝对差异的有效补偿因子;另一方面,PHM 利用光谱图理论来评估低质量样品的外观退化。图形上几何信号的变化和光谱图小波系数的变化分别用于表征几何形状和纹理外观的退化。最后,将两个分量获得的结果以非线性方法组合,以生成测试点云的总体质量得分。在五个独立数据库上的实验结果表明,PHM 实现了最先进的 (SOTA) 性能,并在多种失真环境中提供了显着的性能改进。该代码在 https://github.com/zhangyujie-1998/PHM 上公开提供。