当前位置: X-MOL 学术J. Comb. Optim. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Approximation algorithm for prize-collecting vertex cover with fairness constraints
Journal of Combinatorial Optimization ( IF 0.9 ) Pub Date : 2024-10-07 , DOI: 10.1007/s10878-024-01215-w
Mingchao Zhou, Zhao Zhang, Ding-Zhu Du

Considering fairness has become increasingly important in recent research. This paper proposes the prize-collecting vertex cover problem with fairness constraints (FPCVC). In a prize-collecting vertex cover problem, those edges that are not covered incur penalties. By adding fairness concerns into the problem, the vertex set is divided into l groups, the goal is to find a vertex set to minimize the cost-plus-penalty value under the constraints that the profit of edges collected by each group exceeds a coverage requirement. In this paper, we propose a hybrid algorithm (combining deterministic rounding and randomized rounding) for the FPCVC problem which, with probability at least \(1-1/l^{\alpha }\), returns a feasible solution with an objective value at most \(\left( \frac{9(\alpha +1)}{2}\ln l+3\right) \) times that of an optimal solution, where \(\alpha \) is a constant. We also show a lower bound of \(\Omega (\ln l)\) for the approximability of FPCVC. Thus, our approximation ratio is asymptotically best possible. Experiments show that our algorithm performs fairly well empirically.



中文翻译:


具有公平性约束的有奖顶点覆盖近似算法



在最近的研究中,考虑公平性变得越来越重要。本文提出了带有公平约束的领奖顶点覆盖问题(FPCVC)。在有奖顶点覆盖问题中,那些未被覆盖的边会受到惩罚。通过在问题中加入公平性问题,将顶点集分为l组,目标是在每组收集的边的利润超过覆盖要求的约束下,找到一个使成本加罚值最小的顶点集。在本文中,我们针对 FPCVC 问题提出了一种混合算法(结合确定性舍入和随机舍入),该算法以至少\(1-1/l^{\alpha }\)的概率返回具有目标值的可行解至多\(\left( \frac{9(\alpha +1)}{2}\ln l+3\right) \)倍于最优解,其中\(\alpha \)是常数。我们还展示了 FPCVC 近似性的下界\(\Omega (\ln l)\) 。因此,我们的近似比率是渐近最好的。实验表明,我们的算法根据经验表现得相当好。

更新日期:2024-10-08
down
wechat
bug