当前位置:
X-MOL 学术
›
J. Am. Stat. Assoc.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Adaptive Learning of the Latent Space of Wasserstein Generative Adversarial Networks
Journal of the American Statistical Association ( IF 3.0 ) Pub Date : 2024-10-07 , DOI: 10.1080/01621459.2024.2408778 Yixuan Qiu, Qingyi Gao, Xiao Wang
Journal of the American Statistical Association ( IF 3.0 ) Pub Date : 2024-10-07 , DOI: 10.1080/01621459.2024.2408778 Yixuan Qiu, Qingyi Gao, Xiao Wang
Generative models based on latent variables, such as generative adversarial networks (GANs) and variational auto-encoders (VAEs), have gained lots of interests due to their impressive performance i...
中文翻译:
Wasserstein 生成对抗网络潜在空间的自适应学习
基于潜在变量的生成模型,例如生成对抗网络(GAN)和变分自动编码器(VAE),由于其在...
更新日期:2024-10-07
中文翻译:
Wasserstein 生成对抗网络潜在空间的自适应学习
基于潜在变量的生成模型,例如生成对抗网络(GAN)和变分自动编码器(VAE),由于其在...