当前位置:
X-MOL 学术
›
J. Am. Stat. Assoc.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
A Model-Agnostic Graph Neural Network for Integrating Local and Global Information
Journal of the American Statistical Association ( IF 3.0 ) Pub Date : 2024-09-20 , DOI: 10.1080/01621459.2024.2404668 Wenzhuo Zhou, Annie Qu, Keiland W. Cooper, Norbert Fortin, Babak Shahbaba
Journal of the American Statistical Association ( IF 3.0 ) Pub Date : 2024-09-20 , DOI: 10.1080/01621459.2024.2404668 Wenzhuo Zhou, Annie Qu, Keiland W. Cooper, Norbert Fortin, Babak Shahbaba
Graph Neural Networks (GNNs) have achieved promising performance in a variety of graph-focused tasks. Despite their success, however, existing GNNs suffer from two significant limitations: a lack o...
中文翻译:
用于集成局部和全局信息的模型无关的图神经网络
图神经网络(GNN)在各种以图为中心的任务中取得了令人鼓舞的性能。然而,尽管取得了成功,现有的 GNN 仍面临两个重大限制:缺乏...
更新日期:2024-09-20
中文翻译:
用于集成局部和全局信息的模型无关的图神经网络
图神经网络(GNN)在各种以图为中心的任务中取得了令人鼓舞的性能。然而,尽管取得了成功,现有的 GNN 仍面临两个重大限制:缺乏...