Geometric and Functional Analysis ( IF 2.4 ) Pub Date : 2024-10-07 , DOI: 10.1007/s00039-024-00697-4 Mohammed Abouzaid, Mark McLean, Ivan Smith
Given a closed symplectic manifold X, we construct Gromov-Witten-type invariants valued both in (complex) K-theory and in any complex-oriented cohomology theory \(\mathbb{K}\) which is Kp(n)-local for some Morava K-theory Kp(n). We show that these invariants satisfy a version of the Kontsevich-Manin axioms, extending Givental and Lee’s work for the quantum K-theory of complex projective algebraic varieties. In particular, we prove a Gromov-Witten type splitting axiom, and hence define quantum K-theory and quantum \(\mathbb{K}\)-theory as commutative deformations of the corresponding (generalised) cohomology rings of X; the definition of the quantum product involves the formal group of the underlying cohomology theory. The key geometric input of these results is a construction of global Kuranishi charts for moduli spaces of stable maps of arbitrary genus to X. On the algebraic side, in order to establish a common framework covering both ordinary K-theory and Kp(n)-local theories, we introduce a formalism of ‘counting theories’ for enumerative invariants on a category of global Kuranishi charts.
中文翻译:
复杂和 Morava-局部 K 理论中的 Gromov-Witten 不变量
给定一个闭辛流形X ,我们构造在(复) K理论和任何面向复数的上同调理论\(\mathbb{K}\)中均有价值的 Gromov-Witten 型不变量,即K p ( n )-local对于一些 Morava K理论K p ( n )。我们证明这些不变量满足 Kontsevich-Manin 公理的一个版本,扩展了 Givental 和 Lee 在复射影代数簇的量子K理论方面的工作。特别是,我们证明了 Gromov-Witten 型分裂公理,因此将量子K理论和量子\(\mathbb{K}\) -理论定义为X的相应(广义)上同调环的交换变形;量子乘积的定义涉及基础上同调理论的形式群。这些结果的关键几何输入是构建任意属到X的稳定映射的模空间的全局 Kuranishi 图。在代数方面,为了建立一个涵盖普通K理论和K p ( n ) 局部理论的通用框架,我们引入了一种用于全局 Kuranishi 图类别上的枚举不变量的“计数理论”形式。