当前位置: X-MOL 学术J. Non Equilib. Thermodyn. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Efficient ecological function analysis and multi-objective optimizations for an endoreversible simple air refrigerator cycle
Journal of Non-Equilibrium Thermodynamics ( IF 4.3 ) Pub Date : 2024-10-05 , DOI: 10.1515/jnet-2024-0045
Zijian Xu, Yanlin Ge, Lingen Chen, Huijun Feng

Combining finite time thermodynamics and exergetic analysis, analogous to the definition of ecological efficient power for heat engines, this paper proposes a unified performance indicator for various cycles, exergy-based efficient ecological function (E ɛ ) which is defined as product of exergy-based ecological function and coefficient of performance, and introduces it into performance optimization of endoreversible simple air refrigerator cycle coupled to constant-temperature heat reservoirs. Relations among E ɛ , pressure ratio (π) and heat conductance distribution ratio (u) are derived by using numerical method. The cycle performance indicators which include cooling load (R), coefficient of performance (ɛ), and exergetic loss rate (E out/T 0) under the different maximum objective criteria are compared. Taking π as optimal variable, and taking R, ɛ, cooling load density (r), E ɛ and their combinations as optimization objectives, multi-objective optimizations, totally 15 optimization combinations, are performed by using NASG-II algorithm. The results demonstrate that, the maximum E ɛ criteria can better reflect the compromise among R, ɛ and E out/T 0. The Pareto solution sets are majorly distributed in 2.5–20 when quadru-objective optimizations are performed. The option selected by LINMAP decision-making method is closer to ideal solution when bi-objective optimization of ɛ and r is carried out.

中文翻译:


针对不可逆简单空气制冷循环的高效生态功能分析和多目标优化



本文结合有限时间热力学和用能分析,类比热机生态高效功率的定义,提出了各种循环的统一性能指标,即基于用能的有效生态函数 (E ɛ),定义为基于用能的生态函数和性能系数的乘积,并将其引入到耦合恒温储热器的可逆简单空气制冷机循环的性能优化中。 E ɛ 、压力比 (π) 和热导分布比 (u) 之间的关系是用数值方法推导出来的。比较了不同最大客观标准下包括冷却负荷 (R)、性能系数 (ɛ) 和用能损失率 (Eout/T0) 的循环性能指标。以π为最优变量,以 R、ɛ、冷负荷密度 (r)、E ɛ 及其组合为优化目标,采用 NASG-II 算法进行多目标优化,共计 15 个优化组合。结果表明,最大 E ɛ 准则更能反映 R、ɛ 和 Eout/T0 之间的折衷。执行四目标优化时,帕累托解集主要分布在 2.5-20 中。当对 ɛ 和 r 进行双目标优化时,LINMAP 决策方法选择的选项更接近理想解。
更新日期:2024-10-05
down
wechat
bug