当前位置:
X-MOL 学术
›
Remote Sens. Environ.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Surface energy balance-based surface urban heat island decomposition at high resolution
Remote Sensing of Environment ( IF 11.1 ) Pub Date : 2024-10-05 , DOI: 10.1016/j.rse.2024.114447 Fengxiang Guo, Jiayue Sun, Die Hu
Remote Sensing of Environment ( IF 11.1 ) Pub Date : 2024-10-05 , DOI: 10.1016/j.rse.2024.114447 Fengxiang Guo, Jiayue Sun, Die Hu
Urban heat island (UHI) is among the most pronounced human impacts on Earth. To formulate locally adapted mitigation strategies, a comprehensive understanding of the influencing mechanisms of UHI at high resolution is imperative. Based on surface energy balance, we attributed surface UHI (SUHI) into five biophysical terms (surface radiation, anthropogenic heat, convection, evapotranspiration and heat storage term) using Sentinel-2 and Landsat-8 images in Beijing. The simulated SUHI intensity, derived by combining all five contribution terms, exhibited a good consistency but a higher spatial resolution, than SUHI intensity extracted from Landsat-8 land surface temperature product. SUHI intensity tended to decrease from the old city to outsides, attributed to the decrease of evapotranspiration, solar radiation and anthropogenic heat term. The convection and heat storage term play a positive role in reducing SUHI. Among urban morphological blocks, low-rise and high-density blocks had the strongest SUHI, with the evapotranspiration term contributing the most. The results highlighted the capacity of the urban surface to evaporate water in affecting Beijing SUHI. The proposed method provides one useful tool to analyze the drivers of SUHI from the aspect of heat formation, which can be potentially applied worldwide for large-scale comparisons of how urbanization affects UHI.
更新日期:2024-10-05