当前位置:
X-MOL 学术
›
Appl. Phys. Rev.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Intelligent sensing for the autonomous manipulation of microrobots toward minimally invasive cell surgery
Applied Physics Reviews ( IF 11.9 ) Pub Date : 2024-10-04 , DOI: 10.1063/5.0211141 Wendi Gao, Yunfei Bai, Yujie Yang, Lanlan Jia, Yingbiao Mi, Wenji Cui, Dehua Liu, Adnan Shakoor, Libo Zhao, Junyang Li, Tao Luo, Dong Sun, Zhuangde Jiang
Applied Physics Reviews ( IF 11.9 ) Pub Date : 2024-10-04 , DOI: 10.1063/5.0211141 Wendi Gao, Yunfei Bai, Yujie Yang, Lanlan Jia, Yingbiao Mi, Wenji Cui, Dehua Liu, Adnan Shakoor, Libo Zhao, Junyang Li, Tao Luo, Dong Sun, Zhuangde Jiang
The physiology and pathogenesis of biological cells have drawn enormous research interest. Benefiting from the rapid development of microfabrication and microelectronics, miniaturized robots with a tool size below micrometers have widely been studied for manipulating biological cells in vitro and in vivo. Traditionally, the complex physiological environment and biological fragility require human labor interference to fulfill these tasks, resulting in high risks of irreversible structural or functional damage and even clinical risk. Intelligent sensing devices and approaches have been recently integrated within robotic systems for environment visualization and interaction force control. As a consequence, microrobots can be autonomously manipulated with visual and interaction force feedback, greatly improving accuracy, efficiency, and damage regulation for minimally invasive cell surgery. This review first explores advanced tactile sensing in the aspects of sensing principles, design methodologies, and underlying physics. It also comprehensively discusses recent progress on visual sensing, where the imaging instruments and processing methods are summarized and analyzed. It then introduces autonomous micromanipulation practices utilizing visual and tactile sensing feedback and their corresponding applications in minimally invasive surgery. Finally, this work highlights and discusses the remaining challenges of current robotic micromanipulation and their future directions in clinical trials, providing valuable references about this field.
中文翻译:
用于微型机器人自主操纵微创细胞手术的智能传感
生物细胞的生理学和发病机制引起了巨大的研究兴趣。受益于微纳加工和微电子学的快速发展,工具尺寸低于微米的小型化机器人已被广泛研究用于体外和体内操纵生物细胞。传统上,复杂的生理环境和生物脆弱性需要人工干预才能完成这些任务,导致不可逆的结构或功能损伤风险很高,甚至存在临床风险。智能传感设备和方法最近已集成到机器人系统中,用于环境可视化和交互力控制。因此,微型机器人可以通过视觉和交互力反馈进行自主操作,大大提高了微创细胞手术的准确性、效率和损伤调节。本文首先从传感原理、设计方法和基础物理学等方面探讨了先进的触觉传感。它还全面讨论了视觉传感的最新进展,总结和分析了成像仪器和处理方法。然后,它介绍了利用视觉和触觉传感反馈的自主显微操作实践及其在微创手术中的相应应用。最后,这项工作强调并讨论了当前机器人显微操作仍然存在的挑战及其在临床试验中的未来方向,为该领域提供了有价值的参考。
更新日期:2024-10-04
中文翻译:
用于微型机器人自主操纵微创细胞手术的智能传感
生物细胞的生理学和发病机制引起了巨大的研究兴趣。受益于微纳加工和微电子学的快速发展,工具尺寸低于微米的小型化机器人已被广泛研究用于体外和体内操纵生物细胞。传统上,复杂的生理环境和生物脆弱性需要人工干预才能完成这些任务,导致不可逆的结构或功能损伤风险很高,甚至存在临床风险。智能传感设备和方法最近已集成到机器人系统中,用于环境可视化和交互力控制。因此,微型机器人可以通过视觉和交互力反馈进行自主操作,大大提高了微创细胞手术的准确性、效率和损伤调节。本文首先从传感原理、设计方法和基础物理学等方面探讨了先进的触觉传感。它还全面讨论了视觉传感的最新进展,总结和分析了成像仪器和处理方法。然后,它介绍了利用视觉和触觉传感反馈的自主显微操作实践及其在微创手术中的相应应用。最后,这项工作强调并讨论了当前机器人显微操作仍然存在的挑战及其在临床试验中的未来方向,为该领域提供了有价值的参考。