当前位置: X-MOL 学术ACS Appl. Mater. Interfaces › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
MOFs with the Stability for Practical Gas Adsorption Applications Require New Design Rules
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2024-10-04 , DOI: 10.1021/acsami.4c13250
Changhwan Oh 1, 2 , Aditya Nandy 1, 3 , Shuwen Yue 1 , Heather J Kulik 1, 3
Affiliation  

Metal–organic frameworks (MOFs) have been widely studied for their ability to capture and store greenhouse gases. However, most computational discovery efforts study hypothetical MOFs without consideration of their stability, limiting the practical application of novel materials. We overcome this limitation by screening hypothetical ultrastable MOFs that have predicted high thermal and activation stability, as judged by machine learning (ML) models trained on experimental measures of stability. We enhance this set by computing the bulk modulus as a measure of mechanical stability and filter 1102 mechanically robust hypothetical MOFs from a database of ultrastable MOFs (USMOF DB). Grand Canonical Monte Carlo simulations are then employed to predict the gas adsorption properties of these hypothetical MOFs, alongside a database of experimental MOFs. We identify privileged building blocks that lead MOFs in USMOF DB to show exceptional working capacities compared to the experimental MOFs. We interpret these differences by training ML models on CO2 and CH4 adsorption in these databases, showing how poor model transferability between data sets indicates that novel design rules can be derived from USMOF DB that would not have been gathered through assessment of structurally characterized MOFs. We identify geometric features and node chemistry that will enable the rational design of MOFs with enhanced gas adsorption properties in synthetically realizable MOFs.

中文翻译:


具有实际气体吸附应用稳定性的 MOF 需要新的设计规则



金属有机框架 (MOF) 因其捕获和储存温室气体的能力而被广泛研究。然而,大多数计算发现工作研究假设的 MOF 而不考虑它们的稳定性,限制了新材料的实际应用。我们通过筛选假设的超稳定 MOF 来克服这一限制,这些 MOF 预测了高热稳定性和活化稳定性,这是通过根据稳定性实验测量训练的机器学习 (ML) 模型来判断的。我们通过计算体积模量作为机械稳定性的量度来增强这组,并从超稳定 MOF 数据库 (USMOF DB) 中过滤 1102 个机械稳健的假设 MOF。然后采用 Grand Canonical Monte Carlo 模拟来预测这些假设 MOF 的气体吸附特性,以及实验 MOF 数据库。我们确定了导致 USMOF DB 中的 MOF 与实验性 MOF 相比表现出卓越工作能力的特权构建块。我们通过在这些数据库中训练 CO2 和 CH4 吸附的 ML 模型来解释这些差异,表明数据集之间的模型可传递性差表明可以从 USMOF DB 派生出新的设计规则,而这些规则不会通过评估结构特征的 MOF 来收集。我们确定了几何特征和节点化学,这将使 MOF 能够在合成可实现的 MOF 中实现具有增强气体吸附性能的 MOF 进行合理设计。
更新日期:2024-10-04
down
wechat
bug