当前位置:
X-MOL 学术
›
Inorg. Chem.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Carbothermal Reduction-Assisted Synthesis of a Carbon-Supported Highly Dispersed PtSn Nanoalloy for the Oxygen Reduction Reaction
Inorganic Chemistry ( IF 4.3 ) Pub Date : 2024-10-03 , DOI: 10.1021/acs.inorgchem.4c03099 Bin Li, Jing Liu, Chuan Zhao, Anjun Hu, Xuping Sun, Bingbao Mei, Jianping Long
Inorganic Chemistry ( IF 4.3 ) Pub Date : 2024-10-03 , DOI: 10.1021/acs.inorgchem.4c03099 Bin Li, Jing Liu, Chuan Zhao, Anjun Hu, Xuping Sun, Bingbao Mei, Jianping Long
Exploring high-performance and low-platinum-based electrocatalysts to accelerate the oxygen reduction reaction (ORR) at the air cathode of zinc–air batteries remains crucial. Herein, by combining electroless deposition and carbothermal reduction, a nitrogen-doped carbon-supported highly dispersed PtSn alloy nanocatalyst (PtSn/NC) was prepared for a high-efficiency ORR process. Electrochemical measurements show that PtSn/NC exhibits excellent electrocatalytic ORR activity with a half-wave potential of 0.850 V versus reversible hydrogen electrode (RHE), which is higher than that of commercial Pt/C (0.815 V). The PtSn/NC-based (20 μgPt cm–2) rechargeable Zn–air battery exhibited astonishing performance with a maximum power density of up to 150.1 mW cm–2, as well as excellent rate performance and charge/discharge stability. Physical characterization reveals that carbothermal reduction could compel the transformation of Sn oxide into metallic Sn, which then alloys with the deposited Pt atoms to form the PtSn nanoalloy, in which electrons are transferred from Sn atoms to neighboring Pt atoms, thereby improving the ability of Pt-based active sites to catalyze the ORR process in PtSn/NC by optimizing the unoccupied d-band of Pt atoms. This work provides a reliable and innovative route for the rational design of highly dispersed Pt-based alloy ORR electrocatalysts.
中文翻译:
碳热还原辅助合成碳负载高分散 PtSn 纳米合金用于氧还原反应
探索高性能和低铂基电催化剂以加速锌-空气电池空气阴极的氧还原反应 (ORR) 仍然至关重要。本文通过化学沉积和碳热还原相结合,制备了一种用于高效 ORR 工艺的氮掺杂碳负载高分散 PtSn 合金纳米催化剂 (PtSn/NC)。电化学测量表明,与可逆氢电极 (RHE) 相比,PtSn/NC 表现出优异的电催化 ORR 活性,半波电位为 0.850 V,高于商用 Pt/C (0.815 V)。基于 PtSn/NC (20 μgPt cm–2) 的可充电锌空气电池表现出惊人的性能,最大功率密度高达 150.1 mW cm–2,以及出色的倍率性能和充电/放电稳定性。物理表征表明,碳热还原可以迫使 Sn 氧化物转化为金属 Sn,然后与沉积的 Pt 原子合金化形成 PtSn 纳米合金,其中电子从 Sn 原子转移到相邻的 Pt 原子,从而通过优化未占据的 d 来提高基于 Pt 的活性位点催化 PtSn/NC 中 ORR 过程的能力-Pt 原子带。这项工作为高度分散的 Pt 基合金 ORR 电催化剂的合理设计提供了一条可靠的创新路线。
更新日期:2024-10-03
中文翻译:
碳热还原辅助合成碳负载高分散 PtSn 纳米合金用于氧还原反应
探索高性能和低铂基电催化剂以加速锌-空气电池空气阴极的氧还原反应 (ORR) 仍然至关重要。本文通过化学沉积和碳热还原相结合,制备了一种用于高效 ORR 工艺的氮掺杂碳负载高分散 PtSn 合金纳米催化剂 (PtSn/NC)。电化学测量表明,与可逆氢电极 (RHE) 相比,PtSn/NC 表现出优异的电催化 ORR 活性,半波电位为 0.850 V,高于商用 Pt/C (0.815 V)。基于 PtSn/NC (20 μgPt cm–2) 的可充电锌空气电池表现出惊人的性能,最大功率密度高达 150.1 mW cm–2,以及出色的倍率性能和充电/放电稳定性。物理表征表明,碳热还原可以迫使 Sn 氧化物转化为金属 Sn,然后与沉积的 Pt 原子合金化形成 PtSn 纳米合金,其中电子从 Sn 原子转移到相邻的 Pt 原子,从而通过优化未占据的 d 来提高基于 Pt 的活性位点催化 PtSn/NC 中 ORR 过程的能力-Pt 原子带。这项工作为高度分散的 Pt 基合金 ORR 电催化剂的合理设计提供了一条可靠的创新路线。