当前位置:
X-MOL 学术
›
Inorg. Chem.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Regulating the Layer Stacking Configuration of CTF-TiO2 Heterostructure for Improving the Photocatalytic CO2 Reduction
Inorganic Chemistry ( IF 4.3 ) Pub Date : 2024-10-03 , DOI: 10.1021/acs.inorgchem.4c03191 Jing Li, Yu Xia, Zhiting Zhang, Xiaolong Zhao, Lei Wang, Jingwei Huang, Houde She, Xinheng Li, Qizhao Wang
Inorganic Chemistry ( IF 4.3 ) Pub Date : 2024-10-03 , DOI: 10.1021/acs.inorgchem.4c03191 Jing Li, Yu Xia, Zhiting Zhang, Xiaolong Zhao, Lei Wang, Jingwei Huang, Houde She, Xinheng Li, Qizhao Wang
Herein, covalent triazine frameworks in eclipsed AA and staggered AB stacking modes are respectively used for the in-situ growth of TiO2, and two heterostructures are obtained. Due to the highly organized stacking of the molecular layer in CTF-AA that strengthens the interlayer interaction, the light absorption and carrier migration of CTF-AA/TiO2 are both enhanced in comparison to those of its component or CTF-AB/TiO2. Correspondently, the photocatalytic CO2 reduction reaction (CO2RR) of CTF-AA/TiO2 proffers 9.19 μmol·g–1·h–1 CH4 and 2.32 μmol·g–1·h–1 CO production, about 9.2 and 4.3 times greater than that of pristine TiO2, respectively. Even though the innate photoresponse of the triazine unit endows CTF-AB/TiO2 with augmented light capturing, its photocatalytic CO2 conversion is relatively insignificant. According to the analyses of the planar-averaged electron density difference and Bader charge, the unproductive CO2 efficiency might be due to the insufficient interfacial electron transfer from TiO2 to CTF-AB. Given that the ΔG (−3.22 eV) of CHO intermediate generation is lower than that of CO desorption (−1.23 eV), the reaction tends to further generate CH4 other than yielding CO. This study could shed fresh light over the reasonable design of effective photocatalytic heterostructures.
中文翻译:
调控 CTF-TiO2 异质结构的层堆叠构型以提高光催化 CO2 还原
在此,分别使用日蚀 AA 和交错 AB 堆叠模式的共价三嗪框架用于 TiO2 的原位生长,并获得了两种异质结构。由于 CTF-AA 中分子层的高度组织化堆叠加强了层间相互作用,因此与其组分或 CTF-AB/TiO2 相比,CTF-AA/TiO2 的光吸收和载流子迁移均得到增强。相应地,CTF-AA/TiO2 的光催化 CO2 还原反应 (CO2RR) 产生 9.19 μmol·g–1·h–1 CH4 和 2.32 μmol·g–1·h–1 CO,分别是原始 TiO2 的 9.2 倍和 4.3 倍。尽管三嗪单元的先天光响应赋予 CTF-AB/TiO2 增强的光捕获能力,但其光催化 CO2 转化相对微不足道。根据平面平均电子密度差和 Bader 电荷的分析,低效的 CO2 效率可能是由于从 TiO2 到 CTF-AB 的界面电子转移不足。鉴于 CHO 中间体生成的 Δ G (-3.22 eV) 低于 CO 解吸的 ΔG (-1.23 eV),该反应倾向于进一步生成 CH4,而不是产生 CO。本研究可为合理设计有效的光催化异质结构提供新的思路。
更新日期:2024-10-03
中文翻译:
调控 CTF-TiO2 异质结构的层堆叠构型以提高光催化 CO2 还原
在此,分别使用日蚀 AA 和交错 AB 堆叠模式的共价三嗪框架用于 TiO2 的原位生长,并获得了两种异质结构。由于 CTF-AA 中分子层的高度组织化堆叠加强了层间相互作用,因此与其组分或 CTF-AB/TiO2 相比,CTF-AA/TiO2 的光吸收和载流子迁移均得到增强。相应地,CTF-AA/TiO2 的光催化 CO2 还原反应 (CO2RR) 产生 9.19 μmol·g–1·h–1 CH4 和 2.32 μmol·g–1·h–1 CO,分别是原始 TiO2 的 9.2 倍和 4.3 倍。尽管三嗪单元的先天光响应赋予 CTF-AB/TiO2 增强的光捕获能力,但其光催化 CO2 转化相对微不足道。根据平面平均电子密度差和 Bader 电荷的分析,低效的 CO2 效率可能是由于从 TiO2 到 CTF-AB 的界面电子转移不足。鉴于 CHO 中间体生成的 Δ G (-3.22 eV) 低于 CO 解吸的 ΔG (-1.23 eV),该反应倾向于进一步生成 CH4,而不是产生 CO。本研究可为合理设计有效的光催化异质结构提供新的思路。