当前位置:
X-MOL 学术
›
Inorg. Chem.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Improving Catalytic Performance via the Synergy of Tensile Lattice Strain and Plasmonic Enhancement in Defective AuPd@Pd Short Nanowires
Inorganic Chemistry ( IF 4.3 ) Pub Date : 2024-10-03 , DOI: 10.1021/acs.inorgchem.4c03632 Haosheng Liang, Xiangyu Tong, Yuanyuan Min, Yingying Wang, Xiaohu Wu, Yiqun Zheng
Inorganic Chemistry ( IF 4.3 ) Pub Date : 2024-10-03 , DOI: 10.1021/acs.inorgchem.4c03632 Haosheng Liang, Xiangyu Tong, Yuanyuan Min, Yingying Wang, Xiaohu Wu, Yiqun Zheng
The synthesis of bimetallic nanocatalysts with strained crystal lattices has attracted considerable interest. This is because, beyond the electronic structure modifications realized through elemental doping, the strain effect offers an extra mechanism to fine-tune the electronic structures, thereby possibly improving the catalytic performances. We present a method for constructing defective AuPd@Pd short nanowires, achieved through a controlled galvanic replacement reaction between short AuCu nanowires and Pd precursors. Advanced structural analyses using spherical aberration-corrected transmission electron microscopy (AC-TEM) validated the expanded crystal lattice on the nanowire surface and also demonstrated pronounced plasmonic absorption in the UV–vis region. Leveraging both plasmonic absorption and strain effects, the AuPd@Pd short nanowires displayed a higher apparent rate constant compared to Pd nanoparticles. Integrating molecular dynamic simulations with density functional theory calculations revealed that the tensile strain on AuPd@Pd short nanowires benefited the catalytic activity by elevating the d-band center, thereby intensifying the adsorption of p-nitrophenol. The current research introduces a unique method for synthesizing noble metal nanocrystals with specific dimensions and elucidates the rational development of high-performance plasmonic nanocatalysts through synergistic exploitation of the beneficial strain effect.
中文翻译:
通过拉伸晶格应变和等离子体增强的协同作用提高缺陷AuPd@Pd短纳米线的催化性能
具有应变晶格的双金属纳米催化剂的合成引起了相当大的兴趣。这是因为,除了通过元素掺杂实现的电子结构修饰之外,应变效应还提供了一种额外的机制来微调电子结构,从而可能提高催化性能。我们提出了一种构建有缺陷AuPd@Pd短纳米线的方法,该方法通过短 AuCu 纳米线和 Pd 前驱体之间的受控电替换反应来实现。使用球形像差校正透射电子显微镜 (AC-TEM) 进行的高级结构分析验证了纳米线表面的膨胀晶格,并在紫外-可见光区域证明了明显的等离子体吸收。利用等离激元吸收和应变效应,与 Pd 纳米颗粒相比,AuPd@Pd短纳米线显示出更高的表观速率常数。将分子动力学模拟与密度泛函理论计算相结合表明,AuPd@Pd短纳米线上的拉伸应变通过提高 d 带中心,从而增强对硝基苯酚的吸附,从而有利于催化活性。本研究介绍了一种合成具有特定尺寸贵金属纳米晶的独特方法,并通过协同利用有益应变效应阐明了高性能等离子体纳米催化剂的合理发展。
更新日期:2024-10-03
中文翻译:
通过拉伸晶格应变和等离子体增强的协同作用提高缺陷AuPd@Pd短纳米线的催化性能
具有应变晶格的双金属纳米催化剂的合成引起了相当大的兴趣。这是因为,除了通过元素掺杂实现的电子结构修饰之外,应变效应还提供了一种额外的机制来微调电子结构,从而可能提高催化性能。我们提出了一种构建有缺陷AuPd@Pd短纳米线的方法,该方法通过短 AuCu 纳米线和 Pd 前驱体之间的受控电替换反应来实现。使用球形像差校正透射电子显微镜 (AC-TEM) 进行的高级结构分析验证了纳米线表面的膨胀晶格,并在紫外-可见光区域证明了明显的等离子体吸收。利用等离激元吸收和应变效应,与 Pd 纳米颗粒相比,AuPd@Pd短纳米线显示出更高的表观速率常数。将分子动力学模拟与密度泛函理论计算相结合表明,AuPd@Pd短纳米线上的拉伸应变通过提高 d 带中心,从而增强对硝基苯酚的吸附,从而有利于催化活性。本研究介绍了一种合成具有特定尺寸贵金属纳米晶的独特方法,并通过协同利用有益应变效应阐明了高性能等离子体纳米催化剂的合理发展。