当前位置:
X-MOL 学术
›
Mater. Today Phys.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Efficient and stable perovskite solar cells based on multi-active sites 5-amino-1,3,4-thiadiazole-2-thiol modified interface
Materials Today Physics ( IF 10.0 ) Pub Date : 2024-10-02 , DOI: 10.1016/j.mtphys.2024.101564 Jing Xu, Jihuai Wu, Qingshui Zheng, Lin Gao, Sheng Tang, Fuda Yu, Weihai Sun, Zhang Lan
Materials Today Physics ( IF 10.0 ) Pub Date : 2024-10-02 , DOI: 10.1016/j.mtphys.2024.101564 Jing Xu, Jihuai Wu, Qingshui Zheng, Lin Gao, Sheng Tang, Fuda Yu, Weihai Sun, Zhang Lan
The highest certification efficiency of perovskite solar cells (PSCs) has reached 26.7 %. However, the high defect density on the surface of perovskite films prepared by low temperature solution method and the energy mismatch between the carrier transport layers and perovskite layer (PVK) greatly limit the performance improvement of PSCs. The introduction of passivating agent to modify the perovskite interface and grain boundary can reduce the defect density, coordinate the energy level effectively, and improve the efficiency and stability of devices. A Lewis base molecule 5-amino-1,3,4-thiadiazole-2-thiol (AMTD) with multiple active sites is introduced at the interface between PVK and hole transport layer (HTL). The electron-rich groups, such as = S, –S–, –NH2 , –N on AMTD, passivate the positive electrical defects on the interface and grain boundary, and increase carrier transport efficiency. The interfacial energy level array is optimized to achieve more efficient charge transportation. In addition, the modified of AMTD has a significant protective effect on the perovskite, which inhibit the moisture erosion of in environment. Consequently, the AMTD-optimized device achieves a power conversion efficiency (PCE) of 24.13 %, compared to the efficiency of 21.62 % for pristine device. The stability of the devices is improved greatly.
中文翻译:
基于多活性位点 5-氨基-1,3,4-噻二唑-2-硫醇修饰界面的高效稳定钙钛矿太阳能电池
钙钛矿太阳能电池 (PSC) 的最高认证效率已达到 26.7%。然而,低温固溶法制备的钙钛矿薄膜表面的高缺陷密度以及载流子传输层和钙钛矿层 (PVK) 之间的能量失配极大地限制了 PSC 的性能改进。引入钝化剂修饰钙钛矿界面和晶界,可以降低缺陷密度,有效协调能级,提高器件的效率和稳定性。在 PVK 和空穴传输层 (HTL) 之间的界面处引入了具有多个活性位点的路易斯碱分子 5-氨基-1,3,4-噻二唑-2-硫醇 (AMTD)。尚乘的富电子基团,如 =S、-S–、–NH2、–N,钝化了界面和晶界上的正电缺陷,提高了载流子传输效率。界面能级阵列经过优化,可实现更高效的电荷传输。此外,尚乘改性后对钙钛矿具有显著的保护作用,抑制了环境中的水分侵蚀。因此,尚乘优化的器件实现了 24.13% 的功率转换效率 (PCE),而原始器件的效率为 21.62%。设备的稳定性大大提高。
更新日期:2024-10-02
中文翻译:
基于多活性位点 5-氨基-1,3,4-噻二唑-2-硫醇修饰界面的高效稳定钙钛矿太阳能电池
钙钛矿太阳能电池 (PSC) 的最高认证效率已达到 26.7%。然而,低温固溶法制备的钙钛矿薄膜表面的高缺陷密度以及载流子传输层和钙钛矿层 (PVK) 之间的能量失配极大地限制了 PSC 的性能改进。引入钝化剂修饰钙钛矿界面和晶界,可以降低缺陷密度,有效协调能级,提高器件的效率和稳定性。在 PVK 和空穴传输层 (HTL) 之间的界面处引入了具有多个活性位点的路易斯碱分子 5-氨基-1,3,4-噻二唑-2-硫醇 (AMTD)。尚乘的富电子基团,如 =S、-S–、–NH2、–N,钝化了界面和晶界上的正电缺陷,提高了载流子传输效率。界面能级阵列经过优化,可实现更高效的电荷传输。此外,尚乘改性后对钙钛矿具有显著的保护作用,抑制了环境中的水分侵蚀。因此,尚乘优化的器件实现了 24.13% 的功率转换效率 (PCE),而原始器件的效率为 21.62%。设备的稳定性大大提高。