当前位置: X-MOL 学术Prog. Mater. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Advanced Mg-based materials for energy storage: fundamental, progresses, challenges and perspectives
Progress in Materials Science ( IF 33.6 ) Pub Date : 2024-10-01 , DOI: 10.1016/j.pmatsci.2024.101381
Junrui Zhang, Mili Liu, Jiacheng Qi, Nuo Lei, Shengrong Guo, Jiangfeng Li, Xuezhang Xiao, Liuzhang Ouyang

Magnesium (Mg)-based materials exhibit higher hydrogen-storage density among solid-state hydrogen-storage materials (HSMs). Highly reliable hydrolysis can be achieved using them for hydrogen production. They can also achieve the integration of hydrogen production and storage via the regeneration. Furthermore, rechargeable magnesium batteries (RMBs), which possess desirable qualities that exhibit immense potential in addressing challenges related to lithium resource scarcity. However, limitations like high desorption temperature, poor cycle life, low hydrolysis rate, and propensity for passivation layer on Mg anodes, hinder their large-scale use as promising energy storage materials (ESMs). Herein, the review offers a comprehensive summary and analysis of the latest research in Mg-based materials for hydrogen storage, production, regeneration and RMBs. We summarize the impact of different methodologies on the thermodynamic and kinetic properties of MgH2. In particular, we thoroughly investigate the commonly used methods for enhancing the hydrolysis efficiency of Mg/MgH2. The currently research status on the regeneration of borohydrides by Mg-based materials is also summarized. In addition, the advantages and disadvantages of utilizing Mg as anode material in RMBs are also evaluated. This review aims to provide a fundamental insight of Mg-based materials and technologies and offer new strategies for promoting the sustainable development of advanced Mg-based materials.

中文翻译:


先进镁基储能材料:基础、进展、挑战和前景



镁 (Mg) 基材料在固态储氢材料 (HSM) 中表现出更高的储氢密度。使用它们生产氢气可以实现高度可靠的水解。它们还可以通过再生实现氢气生产和储存的集成。此外,可充电镁电池 (RMB) 具有理想的品质,在解决与锂资源稀缺相关的挑战方面表现出巨大潜力。然而,脱附温度高、循环寿命短、水解速率低以及 Mg 负极上钝化层的倾向等限制阻碍了它们作为有前途的储能材料 (ESM) 的大规模使用。在此,综述对用于氢储存、生产、再生和 RMB 的 Mg 基材料的最新研究进行了全面总结和分析。我们总结了不同方法对 MgH2 的热力学和动力学特性的影响。特别是,我们深入研究了提高 Mg/MgH2 水解效率的常用方法。本文还总结了目前 Mg 基材料再生硼氢化物的研究现状。此外,还评估了在 RMB 中使用 Mg 作为负极材料的优缺点。本文旨在提供对镁基材料和技术的基本见解,并为促进先进镁基材料的可持续发展提供新策略。
更新日期:2024-10-01
down
wechat
bug