Designs, Codes and Cryptography ( IF 1.4 ) Pub Date : 2024-10-03 , DOI: 10.1007/s10623-024-01493-9 Ajani De Vas Gunasekara, Alice Devillers
An H-decomposition of a graph \(\Gamma \) is a partition of its edge set into subgraphs isomorphic to H. A transitive decomposition is a special kind of H-decomposition that is highly symmetrical in the sense that the subgraphs (copies of H) are preserved and transitively permuted by a group of automorphisms of \(\Gamma \). This paper concerns transitive H-decompositions of the graph \(K_n \Box K_n\) where H is a path. When n is an odd prime, we present a construction for a transitive path decomposition where the paths in the decomposition are considerably large compared to the number of vertices. Our main result supports well-known Gallai’s conjecture and an extended version of Ringel’s conjecture.
中文翻译:
完整图的笛卡尔积的传递路径分解
图 \(\Gamma \) 的 H 分解是将其边划分为与 H 同构的子图。传递分解是一种特殊的 H 分解,它是高度对称的,因为子图(H 的副本)被保留下来,并被一组 \(\Gamma \) 的自同态传递置换。本文讨论了图 \(K_n \Box K_n\) 的传递 H 分解,其中 H 是一条路径。当 n 是奇数素数时,我们提出了一种传递路径分解的构造,其中分解中的路径与顶点数量相比相当大。我们的主要结果支持著名的 Gallai 猜想和 Ringel 猜想的扩展版本。