当前位置: X-MOL 学术npj Digit. Med. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Improving prognostic accuracy in lung transplantation using unique features of isolated human lung radiographs
npj Digital Medicine ( IF 12.4 ) Pub Date : 2024-10-03 , DOI: 10.1038/s41746-024-01260-z
Bonnie T. Chao, Andrew T. Sage, Micheal C. McInnis, Jun Ma, Micah Grubert Van Iderstine, Xuanzi Zhou, Jerome Valero, Marcelo Cypel, Mingyao Liu, Bo Wang, Shaf Keshavjee

Ex vivo lung perfusion (EVLP) enables advanced assessment of human lungs for transplant suitability. We developed a convolutional neural network (CNN)-based approach to analyze the largest cohort of isolated lung radiographs to date. CNNs were trained to process 1300 longitudinal radiographs from n = 650 clinical EVLP cases. Latent features were transformed into principal components (PC) and correlated with known radiographic findings. PCs were combined with physiological data to classify clinical outcomes: (1) recipient time to extubation of <72 h, (2) ≥ 72 h, and (3) lungs unsuitable for transplantation. The top PC was significantly correlated with infiltration (Spearman R: 0·72, p < 0·0001), and adding radiographic PCs significantly improved the discrimination for clinical outcomes (Accuracy: 73 vs 78%, p = 0·014). CNN-derived radiographic lung features therefore add substantial value to the current assessments. This approach can be adopted by EVLP centers worldwide to harness radiographic information without requiring real-time radiological expertise.



中文翻译:


利用离体人肺X光片的独特特征提高肺移植的预后准确性



离体肺灌注 (EVLP) 可以对人肺的移植适宜性进行高级评估。我们开发了一种基于卷积神经网络 (CNN) 的方法来分析迄今为止最大的一组孤立肺 X 光照片。 CNN 经过训练,可以处理来自n = 650 例临床 EVLP 病例的 1300 张纵向放射线照片。潜在特征被转化为主成分(PC)并与已知的射线照相结果相关联。 PC 与生理数据相结合,对临床结果进行分类:(1) 受者拔管时间为 <72 小时,(2) ≥ 72 小时,(3) 肺不适合移植。顶部 PC 与浸润显着相关(Spearman R:0·72, p < 0·0001),并且添加放射学 PC 显着改善了对临床结果的辨别(准确度:73 vs 78%, p = 0·014)。因此,CNN 衍生的肺部放射学特征为当前的评估增添了巨大的价值。世界各地的 EVLP 中心都可以采用这种方法来利用放射学信息,而无需实时放射学专业知识。

更新日期:2024-10-03
down
wechat
bug