当前位置: X-MOL 学术Nature › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Bulk high-temperature superconductivity in pressurized tetragonal La2PrNi2O7
Nature ( IF 50.5 ) Pub Date : 2024-10-02 , DOI: 10.1038/s41586-024-07996-8
Ningning Wang, Gang Wang, Xiaoling Shen, Jun Hou, Jun Luo, Xiaoping Ma, Huaixin Yang, Lifen Shi, Jie Dou, Jie Feng, Jie Yang, Yunqing Shi, Zhian Ren, Hanming Ma, Pengtao Yang, Ziyi Liu, Yue Liu, Hua Zhang, Xiaoli Dong, Yuxin Wang, Kun Jiang, Jiangping Hu, Shoko Nagasaki, Kentaro Kitagawa, Stuart Calder, Jiaqiang Yan, Jianping Sun, Bosen Wang, Rui Zhou, Yoshiya Uwatoko, Jinguang Cheng

The Ruddlesden–Popper (R–P) bilayer nickelate, La3Ni2O7, was recently found to show signatures of high-temperature superconductivity (HTSC) at pressures above 14 GPa (ref. 1). Subsequent investigations achieved zero resistance in single-crystalline and polycrystalline samples under hydrostatic pressure conditions2,3,4. Yet, obvious diamagnetic signals, the other hallmark of superconductors, are still lacking owing to the filamentary nature with low superconducting volume fraction2,4,5. The presence of a new 1313 polymorph and competing R–P phases obscured proper identification of the phase for HTSC6,7,8,9. Thus, achieving bulk HTSC and identifying the phase at play are the most prominent tasks. Here we address these issues in the praseodymium (Pr)-doped La2PrNi2O7 polycrystalline samples. We find that substitutions of Pr for La effectively inhibit the intergrowth of different R–P phases, resulting in a nearly pure bilayer structure. For La2PrNi2O7, pressure-induced orthorhombic to tetragonal structural transition takes place at Pc ≈ 11 GPa, above which HTSC emerges gradually on further compression. The superconducting transition temperatures at 18–20 GPa reach \({T}_{{\rm{c}}}^{{\rm{onset}}}=82.5\,{\rm{K}}\) and \({T}_{{\rm{c}}}^{{\rm{zero}}}=60\,{\rm{K}}\), which are the highest values, to our knowledge, among known nickelate superconductors. Importantly, bulk HTSC was testified by detecting clear diamagnetic signals below about 75 K with appreciable superconducting shielding volume fractions at a pressure of above 15 GPa. Our results not only resolve the existing controversies but also provide directions for exploring bulk HTSC in the bilayer nickelates.

更新日期:2024-10-03
down
wechat
bug