当前位置:
X-MOL 学术
›
J. Materiomics
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Air-stable silicon hybrid solar cells constructed via hydrophobic polymer film
Journal of Materiomics ( IF 8.4 ) Pub Date : 2024-08-31 , DOI: 10.1016/j.jmat.2024.100935 Qi Geng, Zhen Liu, Yuzhou Liu, Zhe Wang, Zhongliang Gao, Xin Sun, Yingfeng Li, Lei Chen, Xiaojun Lv, Meicheng Li
Journal of Materiomics ( IF 8.4 ) Pub Date : 2024-08-31 , DOI: 10.1016/j.jmat.2024.100935 Qi Geng, Zhen Liu, Yuzhou Liu, Zhe Wang, Zhongliang Gao, Xin Sun, Yingfeng Li, Lei Chen, Xiaojun Lv, Meicheng Li
Silicon (Si) hybrid solar cells have advantages of solution manufacturing process and the potential for achieving low-cost fabrication compared to crystalline Si solar cells. However, the functional layer prepared by solution method usually absorbs water molecules from the air, posing a challenge to the stability of the device. Here, a PEDOT derivative, PEDOT:A, was in situ prepared through the introduction of a fluoropolymer, yielding a strongly hydrophobic film that was assembled into a PEDOT:A/Si hybrid solar cell. The PEDOT:A/Si hybrid solar cells retained 90% of its initial performance after storage in the air for 300 h, while PEDOT:PSS only retained 60% with identical device structure. Meanwhile, first principles calculations indicate that the binding energy between fluoropolymer and water molecule was 3.48 kJ/mol, whereas the binding energy between PSS and water molecule was −5.76 kJ/mol. Benefiting from the weak interaction between fluoropolymer and water molecule, the contact angle of water on PEDOT:A film was 100.84°. After optimization, PEDOT:A/Si hybrid solar cells with ITO achieved a power conversion efficiency of 6.43%, retained 97% of its initial efficiency after testing under same conditions. The development of air-stable hybrid device technology is promising in opening up practical applications of low-cost Si based solar cells.
中文翻译:
通过疏水性聚合物薄膜构建的空气稳定硅混合太阳能电池
硅 (Si) 混合太阳能电池具有溶液制造工艺的优势,与晶体硅太阳能电池相比,具有实现低成本制造的潜力。然而,通过溶液法制备的功能层通常会从空气中吸收水分子,对器件的稳定性构成挑战。在这里,通过引入含氟聚合物原位制备了 PEDOT 衍生物 PEDOT:A,产生了一层强疏水性薄膜,该薄膜被组装成 PEDOT:A/Si 混合太阳能电池。PEDOT:A/Si 混合太阳能电池在空气中储存 300 小时后仍保留了 90% 的初始性能,而 PEDOT:PSS 在相同的器件结构下仅保留了 60%。同时,第一性原理计算表明,含氟聚合物与水分子之间的结合能为 3.48 kJ/mol,而 PSS 与水分子之间的结合能为 -5.76 kJ/mol。得益于含氟聚合物与水分子的弱相互作用,水在 PEDOT:A 薄膜上的接触角为 100.84°。优化后,采用 ITO 的 PEDOT:A/Si 混合太阳能电池实现了 6.43% 的功率转换效率,在相同条件下进行测试后,仍保持了 97% 的初始效率。空气稳定混合器件技术的发展有望开辟低成本硅基太阳能电池的实际应用。
更新日期:2024-08-31
中文翻译:
通过疏水性聚合物薄膜构建的空气稳定硅混合太阳能电池
硅 (Si) 混合太阳能电池具有溶液制造工艺的优势,与晶体硅太阳能电池相比,具有实现低成本制造的潜力。然而,通过溶液法制备的功能层通常会从空气中吸收水分子,对器件的稳定性构成挑战。在这里,通过引入含氟聚合物原位制备了 PEDOT 衍生物 PEDOT:A,产生了一层强疏水性薄膜,该薄膜被组装成 PEDOT:A/Si 混合太阳能电池。PEDOT:A/Si 混合太阳能电池在空气中储存 300 小时后仍保留了 90% 的初始性能,而 PEDOT:PSS 在相同的器件结构下仅保留了 60%。同时,第一性原理计算表明,含氟聚合物与水分子之间的结合能为 3.48 kJ/mol,而 PSS 与水分子之间的结合能为 -5.76 kJ/mol。得益于含氟聚合物与水分子的弱相互作用,水在 PEDOT:A 薄膜上的接触角为 100.84°。优化后,采用 ITO 的 PEDOT:A/Si 混合太阳能电池实现了 6.43% 的功率转换效率,在相同条件下进行测试后,仍保持了 97% 的初始效率。空气稳定混合器件技术的发展有望开辟低成本硅基太阳能电池的实际应用。