当前位置:
X-MOL 学术
›
Ann. Surg.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Real-world Decision-making Process for Stereotactic Body Radiotherapy Versus Minimally Invasive Surgery in Early-stage Lung Cancer Patients.
Annals of Surgery ( IF 7.5 ) Pub Date : 2024-10-01 , DOI: 10.1097/sla.0000000000006552 Stijn Vanstraelen,Kay See Tan,Prasad S Adusumilli,Manjit S Bains,Matthew J Bott,Robert J Downey,Daniel R Gomez,Katherine D Gray,James Huang,James M Isbell,Daniela Molena,Bernard J Park,Andreas Rimner,Valerie W Rusch,Narek Shaverdian,Smita Sihag,Abraham J Wu,David R Jones,Gaetano Rocco
Annals of Surgery ( IF 7.5 ) Pub Date : 2024-10-01 , DOI: 10.1097/sla.0000000000006552 Stijn Vanstraelen,Kay See Tan,Prasad S Adusumilli,Manjit S Bains,Matthew J Bott,Robert J Downey,Daniel R Gomez,Katherine D Gray,James Huang,James M Isbell,Daniela Molena,Bernard J Park,Andreas Rimner,Valerie W Rusch,Narek Shaverdian,Smita Sihag,Abraham J Wu,David R Jones,Gaetano Rocco
OBJECTIVE
To generate a prediction model for selection of treatment modality for early-stage non-small cell lung cancer (NSCLC).
SUMMARY BACKGROUND DATA
Stereotactic body radiotherapy (SBRT) and minimally invasive surgery (MIS) are used in the local treatment of early-stage NSCLC. However, selection of patients for either SBRT or MIS remains challenging, due to the multitude of factors influencing the decision-making process.
METHODS
We analyzed 1291 patients with clinical stage I NSCLC treated with intended MIS or SBRT from January 2020 to July 2023. A prediction model for selection for SBRT was created based on multivariable logistic regression analysis. The receiver operating characteristic curve analysis stratified the cohort into 3 treatment-related risk categories. Post-procedural outcomes, recurrence and overall survival (OS) were investigated to assess the performance of the model.
RESULTS
In total, 1116 patients underwent MIS and 175 SBRT. The prediction model included age, performance status, previous pulmonary resection, MSK-Frailty score, FEV1 and DLCO, and demonstrated an area-under-the-curve of 0.908 (95%CI, 0.876-0.938). Based on the probability scores (n=1197), patients were stratified into a low-risk (MIS, n=970 and SBRT, n=28), intermediate-risk (MIS, n=96 and SBRT, n=53) and high-risk category (MIS, n=10 and SBRT, n=40). Treatment modality was not associated with OS (HR of SBRT, 1.67 [95%CI: 0.80-3.48]; P=0.20).
CONCLUSION
Clinical expertise can be translated into a robust predictive model, guiding the selection of stage I NSCLC patients for MIS versus SBRT and effectively categorizing them into three distinct risk groups. Patients in the intermediate category could benefit most from multidisciplinary evaluation.
中文翻译:
早期肺癌患者立体定向放疗与微创手术的真实世界决策过程。
目的 构建早期非小细胞肺癌 (NSCLC) 治疗方式选择的预测模型。摘要 背景数据立体定向放疗 (SBRT) 和微创手术 (MIS) 用于早期 NSCLC 的局部治疗。然而,由于影响决策过程的因素众多,选择 SBRT 或 MIS 的患者仍然具有挑战性。方法 我们分析了 2020年1月至 2023年7月接受预期 MIS 或 SBRT 治疗的 1291 例临床 I 期 NSCLC 患者。基于多变量 logistic 回归分析创建了用于 SBRT 选择的预测模型。受试者工作特征曲线分析将队列分为 3 个治疗相关风险类别。调查术后结局、复发率和总生存期 (OS) 以评估模型的性能。结果 共有 1116 例患者接受了 MIS 和 175 例 SBRT。预测模型包括年龄、体能状态、既往肺切除术、MSK-Frailty 评分、FEV1 和 DLCO,曲线下面积为 0.908 (95% CI,0.876-0.938)。根据概率评分 (n=1197) 将患者分为低风险 (MIS, n=970 和 SBRT, n=28) 、中风险 (MIS, n=96 和 SBRT, n=53) 和高危 (MIS, n=10 和 SBRT, n=40)。治疗方式与 OS 无关 (SBRT 的 HR,1.67 [95%CI: 0.80-3.48];P=0.20)。结论 临床专业知识可以转化为稳健的预测模型,指导 I 期 NSCLC 患者的 MIS 与 SBRT 的选择,并有效地将他们分为三个不同的风险组。中间类别的患者可以从多学科评估中受益最大。
更新日期:2024-10-01
中文翻译:
早期肺癌患者立体定向放疗与微创手术的真实世界决策过程。
目的 构建早期非小细胞肺癌 (NSCLC) 治疗方式选择的预测模型。摘要 背景数据立体定向放疗 (SBRT) 和微创手术 (MIS) 用于早期 NSCLC 的局部治疗。然而,由于影响决策过程的因素众多,选择 SBRT 或 MIS 的患者仍然具有挑战性。方法 我们分析了 2020年1月至 2023年7月接受预期 MIS 或 SBRT 治疗的 1291 例临床 I 期 NSCLC 患者。基于多变量 logistic 回归分析创建了用于 SBRT 选择的预测模型。受试者工作特征曲线分析将队列分为 3 个治疗相关风险类别。调查术后结局、复发率和总生存期 (OS) 以评估模型的性能。结果 共有 1116 例患者接受了 MIS 和 175 例 SBRT。预测模型包括年龄、体能状态、既往肺切除术、MSK-Frailty 评分、FEV1 和 DLCO,曲线下面积为 0.908 (95% CI,0.876-0.938)。根据概率评分 (n=1197) 将患者分为低风险 (MIS, n=970 和 SBRT, n=28) 、中风险 (MIS, n=96 和 SBRT, n=53) 和高危 (MIS, n=10 和 SBRT, n=40)。治疗方式与 OS 无关 (SBRT 的 HR,1.67 [95%CI: 0.80-3.48];P=0.20)。结论 临床专业知识可以转化为稳健的预测模型,指导 I 期 NSCLC 患者的 MIS 与 SBRT 的选择,并有效地将他们分为三个不同的风险组。中间类别的患者可以从多学科评估中受益最大。