当前位置: X-MOL 学术Plant Biotech. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Generation of OsGRF4 and OsSNAC1 alleles for improving rice agronomic traits by CRISPR/Cas9‐mediated manipulation of transposable elements
Plant Biotechnology Journal ( IF 10.1 ) Pub Date : 2024-10-01 , DOI: 10.1111/pbi.14465
Yunna Zheng, Mingjiang Chen, Dunpin Xiong, Xiangbing Meng, Hong Yu, Hongwen Wang, Jiayang Li

Transposable elements (TEs) contribute to gene regulation and phenotypic diversity in plants. Miniature inverted-repeat TEs (MITEs) are short, non-autonomous DNA transposons (100–800 bp) that are numerically the most abundant TEs in the rice genome, and tightly associated with at least 58% of rice genes (Lu et al., 2017). MITEs have been shown to be a major driver of gene expression changes (Castanera et al., 2023), and genome-wide association studies using MITE insertion polymorphisms may allow to dissect the underlying causal genes of agronomic traits (Castanera et al., 2021).

As MITEs are an important source of genetic variation, we hypothesized that genome editing (GE) of MITEs might be an efficient approach to generate novel alleles with altered gene expression for tuning crop traits. Two agriculturally important rice genes, growth-regulating factor 4 (GRF4) and stress-responsive NAC1 (SNAC1), were selected for testing this hypothesis. OsGRF4 could positively regulate yield-related traits (Wang et al., 2022) and has a 294-bp PIF/Harbinger superfamily MITE inserted within 1200 bp 3′ to the stop codon (Figure S1). OsSNAC1 can confer salt stress tolerance (Hu et al., 2006), whereas no MITEs were detected in its upstream and downstream untranslated regions (UTRs) (Figure S2).

Since MITEs in the 3′ UTRs of certain rice genes have been revealed to mediate translational repression of target genes (Shen et al., 2017), we proposed that the downstream MITE of OsGRF4 could be excised by CRISPR/Cas9 to generate an overexpression allele, and designed a deletion vector transformed into rice calli. An average mutation frequency (35.4%) was achieved in the T0 transgenic plants, carrying homozygous (10.4%) or heterozygous (16.7%) deletion mutations. Finally, we obtained two homozygous transgene-free T2 OsGRF4mite lines L1 and L2 (Figure 1a; Figure S3). OsGRF4 mRNA levels in the OsGRF4mite lines were comparable to those of wild type (WT) (Figure 1b). However, OsGRF4 protein levels of OsGRF4mite lines were higher than that of WT (Figure 1c; Figure S4). We compared agronomical traits between OsGRF4mite and WT plants grown under field conditions. Plant height of OsGRF4mite lines decreased significantly compared to WT plants but the productive tiller number (PTN) per plant increased (Figure 1d–f). Thousand-grain weight (TGW) of the OsGRF4mite lines increased 6.4% on average compared to WT. This increase is accompanied by a slight increase in grain length, but not in grain width (Figure 1g,h; Figure S5). A small decrease in seed setting rate (SSR) was observed in OsGRF4mite L1 and L2 lines compared to WT, with an average decrease of 8.6% and 9.3%, respectively (Figure 1i). In general, OsGRF4mite plants slightly increased grain yield per plant (Figure 1j), which was also observed in OsGRF4-overexpressing plants (Wang et al., 2022). These results showed that the MITE deletion in OsGRF4mite plants could increase OsGRF4 abundance to improve rice agronomic traits.

Details are in the caption following the image
Figure 1
Open in figure viewerPowerPoint
Improvement of rice traits by genetic engineering of MITEs in the OsGRF4 and OsSNAC1 loci. (a) Two homozygous transgene-free T2 lines of OsGRF4mite. Black boxes, exons; white boxes, 3′ and 5′ UTRs; grey box, MITE; lines, introns; black triangles, sgRNAs; arrows, PCR primers. (b) OsGRF4 mRNA levels in four-week-old shoots of WT and OsGRF4mite plants (n = 3). (c) OsGRF4 protein levels in 4-week-old shoots of WT and OsGRF4mite plants. (d) Morphologies of WT and OsGRF4mite plants at the grain filling stage. Scale bar, 15 cm. Comparison of agronomic traits between WT and OsGRF4mite plants. (e) Plant height (n = 30). (f) Tiller number (n = 30). (g) Grain length (n = 36). (h) 1000-grain weight (n = 8). (i) Seed setting rate (n = 17). (j) Grain yield per plant (n = 38). (k) Diagram of the OsSNAC1MITE locus, its description is similar to the (a). Red box, mPing. (l) Identification of T0 OsSNAC1MITE plants. Targeted insertions in the forward or reverse orientation are indicated by (+) or (−). (m) Sequencing chromatograms for OsSNAC1MITE no. 3 (L1) and OsSNAC1MITE no. 58 (L2). (n) OsSNAC1 mRNA levels in 3-week-old roots of WT and OsSNAC1MITE plants under the control and 1 h salt conditions (n = 3). (o) Morphologies of 1-week-old seedlings of WT and OsSNAC1MITE plants after 5 days of salt stress (250 mm NaCl) and 7 days of recovery. Scale bars, 3 cm. (p) Plant survival rates of (o) (n = 3). All values are means ± SD; ns, no significant difference; p < 0.05, p < 0.01 and p < 0.0001 significant differences determined by two-tailed Student's t-test.

Some MITEs in the 5′ UTRs of rice genes have previously been reported to act as enhancers, such as the miniature Ping (mPing) TE, which could confer salt stress inducibility on nearby genes in rice (Naito et al., 2009). Therefore, we attempted to insert the 430-bp mPing into salt-tolerance gene OsSNAC1. Recently, an efficient approach to inserting large DNA fragments was developed by combining CRISPR/Cas9 with phosphorothioate-modified 3′-overhang double-stranded oligodeoxynucleotides (dsODNs) (Han et al., 2023). Using the above method to create the OsSNAC1MITE allele, an sgRNA target site at 53-bp upstream of the OsSNAC1 start codon was designed (sgRNA-1), and the corresponding CRISPR/Cas9 plasmid was constructed (Figure 1k). We synthesized dsODNs containing the mPing with five consecutive phosphorothioate modifications and 10-bp 3′-overhang complementary to the resected overhang induced by the Cas9. The mPing dsODNs were then delivered into rice calli together with the CRISPR/Cas9 vector by particle bombardment. A total of 81 independent T0 transgenic plants were obtained. We found that five plants (6.2%) had targeted insertions in the intended orientation and two plants (2.5%) with the reverse orientation (Figure 1l). Two independent T2 homozygous targeted lines, OsSNAC1MITE L1 and L2, were obtained for further analysis (Figure 1m). Under control conditions, there were no obvious differences in OsSNAC1 mRNA levels between OsSNAC1MITE and WT plants. However, after 1 h of salt stress, the relative mRNA levels of OsSNAC1 in OsSNAC1MITE L1 and L2 were 1.9- and 2.3-fold that of WT, respectively (Figure 1n). Consistent with this, OsSNAC1MITE lines showed higher survival rates than the WT plants under high-salinity conditions (Figure 1o,p). These results suggested that the mPing insertion in OsSNAC1MITE plants confers enhanced salt-inducible gene expression, thereby increasing salt tolerance.

In summary, we have shown that genetic manipulation of MITEs in rice could create different beneficial alleles to regulate gene expression and improve crop traits. We have been able to engineer CRISPR/Cas9-targeted loci to achieve site-specific MITE deletion or insertion, thus enabling the regulation of target genes by exploiting the ability of MITEs to control gene expression. Given the widespread presence of MITEs in many plant genomes, it is conceivable that this strategy could be used more widely in the future to optimize plant development and improvement.



中文翻译:


通过 CRISPR/Cas9 介导的转座因子操作产生 OsGRF4 和 OsSNAC1 等位基因以改善水稻农艺性状



转座因子 (TE) 有助于植物的基因调控和表型多样性。微型反向重复 TE (MITE) 是短的、非自主的 DNA 转座子 (100-800 bp),在数值上是水稻基因组中最丰富的 TE,并且与至少 58% 的水稻基因密切相关(Lu et al., 2017)。MITE 已被证明是基因表达变化的主要驱动因素(Castanera等 人,2023 年),使用 MITE 插入多态性的全基因组关联研究可能允许剖析农艺性状的潜在致病基因(Castanera等 人2021 年)。


由于 MITE 是遗传变异的重要来源,我们假设 MITE 的基因组编辑 (GE) 可能是一种有效的方法,可以生成具有改变基因表达的新等位基因以调整作物性状。选择了两个农业上重要的水稻基因,生长调节因子 4GRF4) 和胁迫响应性 NAC1SNAC1) 来检验这一假设。OsGRF4 可以正向调节产量相关性状(Wang等人 2022 年),并且在终止密码子的 1200 bp 3' 内插入了一个 294 bp 的 PIF/Harbinger 超家族 MITE(图 S1)。OsSNAC1可以赋予盐胁迫耐受性(胡等 人2006),而在其上游和下游非翻译区(UTR)中没有检测到MITE(图S2)。


由于某些水稻基因的 3' UTR 中的 MITE 已被揭示介导靶基因的翻译抑制 (Shen et al., 2017),我们提出 OsGRF4 的下游 MITE 可以被 CRISPR/Cas9 切除以产生过表达等位基因,并设计了一种转化为水稻愈伤组织的缺失载体。在携带纯合 (10.4%) 或杂合 (16.7%) 缺失突变的 T0 转基因植物中实现了平均突变频率 (35.4%)。最后,我们获得了两个无纯合子转基因的 T2OsGRF4系 L1 和 L2 (图 1a;图 S3)。OsGRF4系中的 OsGRF4 mRNA 水平与野生型 (WT) 相当(图 1b)。然而,OsGRF4系的 OsGRF4 蛋白水平高于 WT (图 1c;图 S4)。我们比较了在田间条件下生长的 OsGRF4虫和 WT 植物的农艺性状。与 WT 植物相比,OsGRF4虫系的株高显着降低,但每株植物的生产分蘖数 (PTN) 增加(图 1d-f)。与 WT 相比,OsGRF4系的千粒重 (TGW) 平均增加了 6.4%。这种增加伴随着晶粒长度的略有增加,但晶粒宽度没有增加(图 1g,h;图 S5)。与 WT 相比,OsGRF4虫 L1 和 L2 品系的结实率 (SSR) 略有下降,平均分别下降了 8.6% 和 9.3%(图 1i)。 一般来说,OsGRF4虫植物略微增加了每株植物的谷物产量(图 1j),这在 OsGRF4 过表达植物中也观察到(Wang等人 2022 年)。这些结果表明,OsGRF4虫植株中的 MITE 缺失可以增加 OsGRF4 的丰度,从而改善水稻农艺性状。

Details are in the caption following the image
 图 1

在图窗查看器PowerPoint 中打开

通过 OsGRF4OsSNAC1 位点中的 MITE 基因工程改善水稻性状。(a) OsGRF4虫的两个纯合子无转基因 T2 系。黑匣子、外显子;白框、3' 和 5' UTR;灰盒,MITE;线、内含子;黑色三角形,sgRNA;箭头,PCR 引物。(b) WT 和 OsGRF4虫植物 4 周龄芽中的 OsGRF4 mRNA 水平 (n = 3)。(c) WT 和 OsGRF4虫植物 4 周龄芽中的 OsGRF4 蛋白水平。(d) WT 和 OsGRF4虫植株在籽粒灌浆期的形态。比例尺,15 厘米。WT 和 OsGRF4虫植物之间的农艺性状比较。(e) 株高 (n = 30)。(f) 舍柄数 (n = 30)。(g) 晶粒长度 (n = 36)。(h) 1000 格令重量 (n = 8)。(i) 结实率 (n = 17)。(j) 每株植物的粮食产量 (n = 38)。(k) OsSNAC1MITE 位点图,其描述与 (a) 相似。红框,mPing。(l) T0OsSNAC1MITE 植物的鉴定。正向或反向的定向插入用 (+) 或 (-) 表示。(m) OsSNAC1MITE 3 号 (L1) 和 OsSNAC1MITE 58 号 (L2) 的测序色谱图。(n) 在对照和 1 h 盐条件下,WT 和 OsSNAC1MITE 植株 3 周龄根中的 OsSNAC1 mRNA 水平 (n = 3)。 (o) WT 和 OsSNAC1MITE 植株 1 周龄幼苗在盐胁迫 5 天 (250 mm NaCl) 和恢复 7 天后的形态。比例尺,3 厘米。(p) (o) 的植物存活率 (n = 3)。所有值均为 SD ±平均值;ns,无显著差异;p < 0.05、p < 0.01 和 p < 0.0001 由双尾学生 t 检验确定的显著差异。


以前曾报道水稻基因 5' UTR 中的一些 MITE 起增强子的作用,例如微型 PingmPing) TE,它可以赋予水稻中附近基因盐胁迫诱导性(Naito et al., 2009)。因此,我们尝试将 430 bp mPing 插入耐盐基因 OsSNAC1 中。最近,通过将 CRISPR/Cas9 与硫代磷酸酯修饰的 3′-突出端双链寡脱氧核苷酸 (dsODN) 相结合,开发了一种插入大 DNA 片段的有效方法(Han等人 2023 年)。使用上述方法创建 OsSNAC1MITE 等位基因,设计了位于 OsSNAC1 起始密码子上游 53 bp 的 sgRNA 靶位点 (sgRNA-1),并构建了相应的 CRISPR/Cas9 质粒(图 1k)。我们合成了含有 mPing 的 dsODNs,具有 5 个连续的硫代磷酸酯修饰和 10 bp 3′-突出端,与 Cas9 诱导的切除突出端互补。然后通过粒子轰击将 mPing dsODNs 与 CRISPR/Cas9 载体一起递送到水稻愈伤组织中。共获得 81 株独立的 T0 转基因植株。我们发现 5 株植物 (6.2%) 在预期方向上靶向插入,2 株植物 (2.5%) 在相反方向上靶向插入 (图 1l)。获得两个独立的 T2 纯合靶标系 OsSNAC1MITE L1 和 L2 用于进一步分析(图 1m)。在对照条件下,OsSNAC1MITE 和 WT 植株的 OsSNAC1 mRNA 水平无明显差异。 然而,在盐胁迫 1 小时后,OsSNAC1MITE L1 和 L2 中 OsSNAC1 的相对 mRNA 水平分别为 WT 的 1.9 倍和 2.3 倍(图 1n)。与此一致,在高盐度条件下,OsSNAC1MITE 系显示出比 WT 植物更高的存活率(图 1o,p)。这些结果表明,OsSNAC1MITE 植物中的 mPing 插入赋予增强的盐诱导基因表达,从而提高耐盐性。


综上所述,我们已经表明,水稻中 MITEs 的遗传操作可以产生不同的有益等位基因来调节基因表达并改善作物性状。我们已经能够设计 CRISPR/Cas9 靶向基因座以实现位点特异性 MITE 缺失或插入,从而通过利用 MITE 控制基因表达的能力来调节靶基因。鉴于 MITE 在许多植物基因组中广泛存在,可以想象这种策略在未来可以更广泛地用于优化植物发育和改良。

更新日期:2024-10-01
down
wechat
bug