当前位置:
X-MOL 学术
›
Soft Robot.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Improved Assistive Profile Tracking of Exosuit by Considering Adaptive Stiffness Model and Body Movement.
Soft Robotics ( IF 6.4 ) Pub Date : 2024-09-30 , DOI: 10.1089/soro.2023.0028 Jihun Kim,Kimoon Nam,Seungtae Yang,Junyoung Moon,Jaeha Yang,Jaewook Ryu,Giuk Lee
Soft Robotics ( IF 6.4 ) Pub Date : 2024-09-30 , DOI: 10.1089/soro.2023.0028 Jihun Kim,Kimoon Nam,Seungtae Yang,Junyoung Moon,Jaeha Yang,Jaewook Ryu,Giuk Lee
Wearable robots have been developed to assist the physical performance of humans. Specifically, exosuits have attracted attention due to their lightweight and soft nature, which facilitate user movement. Although several types of force controllers have been used in exosuits, it is challenging to control the assistive force due to the material's softness. In this study, we propose three methods to improve the performance of the basic controller using an admittance-based force controller. In method A, the cable was controlled according to the user's thigh motion to eliminate delays in generating the assistive force and improve the control accuracy. In method B, the stiffness feedforward model of the human exosuit was divided into two independent models based on the assistance phase for compensating the nonlinear stiffness more accurately. In method C, the real-time optimization method for the stiffness feedforward model with an adaptive moment estimation method optimizer was proposed. To validate these methods' effectiveness, we designed three new controllers, gradually combined the proposed methods with the basic controller, and compared their performances. We found that controller III, combining all three methods with the basic controller, showed the best performance. By applying controller III in the same exosuit, the root-mean-square error of the assistive force decreased from 39.84 N to 13.72 N, reducing the error by 65.56% compared with the basic controller. Moreover, the time delay for force generation in the gait cycle percentage decreased from 9.99% to 3.41%, reducing the delay by 65.87% compared with the basic controller.
中文翻译:
通过考虑自适应刚度模型和身体运动,改进了外装套装的辅助轮廓跟踪。
可穿戴机器人的开发是为了辅助人类的身体表现。具体来说,外骨骼由于其轻质和柔软的特性而引起了人们的关注,这有助于用户移动。尽管外骨骼中已经使用了多种类型的力控制器,但由于材料的柔软性,控制辅助力具有挑战性。在本研究中,我们提出了三种方法来使用基于导纳的力控制器来提高基本控制器的性能。在方法A中,根据用户大腿的运动来控制电缆,以消除产生辅助力的延迟并提高控制精度。方法B中,根据辅助阶段将人体外装的刚度前馈模型分为两个独立的模型,以更准确地补偿非线性刚度。在方法C中,提出了带有自适应力矩估计方法优化器的刚度前馈模型的实时优化方法。为了验证这些方法的有效性,我们设计了三种新的控制器,逐渐将所提出的方法与基本控制器相结合,并比较了它们的性能。我们发现控制器 III 将所有三种方法与基本控制器相结合,表现出最佳性能。在同一外装上应用控制器III后,辅助力的均方根误差从39.84 N下降到13.72 N,与基本控制器相比误差减少了65.56%。此外,步态周期中力产生的时间延迟百分比从9.99%下降到3.41%,与基本控制器相比延迟减少了65.87%。
更新日期:2024-09-30
中文翻译:
通过考虑自适应刚度模型和身体运动,改进了外装套装的辅助轮廓跟踪。
可穿戴机器人的开发是为了辅助人类的身体表现。具体来说,外骨骼由于其轻质和柔软的特性而引起了人们的关注,这有助于用户移动。尽管外骨骼中已经使用了多种类型的力控制器,但由于材料的柔软性,控制辅助力具有挑战性。在本研究中,我们提出了三种方法来使用基于导纳的力控制器来提高基本控制器的性能。在方法A中,根据用户大腿的运动来控制电缆,以消除产生辅助力的延迟并提高控制精度。方法B中,根据辅助阶段将人体外装的刚度前馈模型分为两个独立的模型,以更准确地补偿非线性刚度。在方法C中,提出了带有自适应力矩估计方法优化器的刚度前馈模型的实时优化方法。为了验证这些方法的有效性,我们设计了三种新的控制器,逐渐将所提出的方法与基本控制器相结合,并比较了它们的性能。我们发现控制器 III 将所有三种方法与基本控制器相结合,表现出最佳性能。在同一外装上应用控制器III后,辅助力的均方根误差从39.84 N下降到13.72 N,与基本控制器相比误差减少了65.56%。此外,步态周期中力产生的时间延迟百分比从9.99%下降到3.41%,与基本控制器相比延迟减少了65.87%。