当前位置:
X-MOL 学术
›
Age Ageing
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Two simple modifications to the World Falls Guidelines algorithm improves its ability to stratify older people into low, intermediate and high fall risk groups
Age and Ageing ( IF 6.0 ) Pub Date : 2024-10-01 , DOI: 10.1093/ageing/afae192 Cameron Hicks, Jasmine Menant, Kim Delbaere, Daina L Sturnieks, Henry Brodaty, Perminder S Sachdev, Stephen R Lord
Age and Ageing ( IF 6.0 ) Pub Date : 2024-10-01 , DOI: 10.1093/ageing/afae192 Cameron Hicks, Jasmine Menant, Kim Delbaere, Daina L Sturnieks, Henry Brodaty, Perminder S Sachdev, Stephen R Lord
Background We conducted a secondary analysis of a cohort study to examine the World Falls Guidelines algorithm’s ability to stratify older people into sizable fall risk groups or whether minor modifications were necessary to achieve this. Methods Six hundred and ninety-three community-living people aged 70–90 years (52.4% women) were stratified into low, intermediate and high fall risk groups using the original algorithm and a modified algorithm applying broader Timed Up and Go test screening with a >10-s cut point (originally >15 s). Prospective fall rates and physical and neuropsychological performance among the three groups were compared. Results The original algorithm was not able to identify three sizable groups, i.e. only five participants (0.7%) were classified as intermediate risk. The modified algorithm classified 349 participants (50.3%) as low risk, 127 participants (18.3%) as intermediate risk and 217 participants (31.3%) as high risk. The sizable intermediate-risk group had physical and neuropsychological characteristics similar to the high-risk group, but a fall rate similar to the low-risk group. The high-risk group had a significantly higher rate of falls than both the low- [incidence rate ratio (IRR) = 2.52, 95% confidence interval (CI) = 1.99–3.20] and intermediate-risk groups (IRR = 2.19, 95% CI = 1.58–3.03). Conclusion A modified algorithm stratified older people into three sizable fall risk groups including an intermediate group who may be at risk of transitioning to high fall rates in the medium to long term. These simple modifications may assist in better triaging older people to appropriate and tailored fall prevention interventions.
中文翻译:
对《世界跌倒指南》算法的两项简单修改提高了将老年人分为低、中和高跌倒风险组的能力
背景 我们对一项队列研究进行了二次分析,以检验《世界跌倒指南》算法将老年人分为相当大的跌倒风险组的能力,或者是否需要进行细微修改才能实现这一目标。方法 使用原始算法和修改后的算法,将 693 名 70-90 岁的社区居民(52.4% 女性)分为低、中和高跌倒风险组,该算法应用更广泛的 Timed Up and Go 测试筛查,并采用>10-s 切点(最初为 >15 s)。比较了三组之间的预期跌倒率以及身体和神经心理表现。结果 原始算法无法识别三个相当大的组,即只有五名参与者 (0.7%) 被归类为中等风险。修改后的算法将 349 名参与者(50.3%)分类为低风险,127 名参与者(18.3%)分类为中风险,217 名参与者(31.3%)分类为高风险。相当大的中危组具有与高危组相似的身体和神经心理特征,但跌倒率与低危组相似。高风险组的跌倒率明显高于低风险组[发病率比 (IRR) = 2.52, 95% 置信区间 (CI) = 1.99–3.20] 和中风险组 (IRR = 2.19, 95) % CI = 1.58–3.03)。结论 修改后的算法将老年人分为三个相当大的跌倒风险组,其中包括一个中间组,该组可能在中长期内面临高跌倒率的风险。这些简单的修改可能有助于更好地对老年人进行分类,以采取适当和量身定制的跌倒预防干预措施。
更新日期:2024-10-01
中文翻译:
对《世界跌倒指南》算法的两项简单修改提高了将老年人分为低、中和高跌倒风险组的能力
背景 我们对一项队列研究进行了二次分析,以检验《世界跌倒指南》算法将老年人分为相当大的跌倒风险组的能力,或者是否需要进行细微修改才能实现这一目标。方法 使用原始算法和修改后的算法,将 693 名 70-90 岁的社区居民(52.4% 女性)分为低、中和高跌倒风险组,该算法应用更广泛的 Timed Up and Go 测试筛查,并采用>10-s 切点(最初为 >15 s)。比较了三组之间的预期跌倒率以及身体和神经心理表现。结果 原始算法无法识别三个相当大的组,即只有五名参与者 (0.7%) 被归类为中等风险。修改后的算法将 349 名参与者(50.3%)分类为低风险,127 名参与者(18.3%)分类为中风险,217 名参与者(31.3%)分类为高风险。相当大的中危组具有与高危组相似的身体和神经心理特征,但跌倒率与低危组相似。高风险组的跌倒率明显高于低风险组[发病率比 (IRR) = 2.52, 95% 置信区间 (CI) = 1.99–3.20] 和中风险组 (IRR = 2.19, 95) % CI = 1.58–3.03)。结论 修改后的算法将老年人分为三个相当大的跌倒风险组,其中包括一个中间组,该组可能在中长期内面临高跌倒率的风险。这些简单的修改可能有助于更好地对老年人进行分类,以采取适当和量身定制的跌倒预防干预措施。