npj Clean Water ( IF 10.4 ) Pub Date : 2024-09-30 , DOI: 10.1038/s41545-024-00385-8 Shu Wang, Kaoming Zhang, Yu Miao, Zhu Wang
Anaerobic ammonium oxidation (anammox) is a cost-effective biological nitrogen removal technology, yet its time-consuming start-up and significant environmental sensitivity are major barriers to its widespread use. Nonetheless, nanotechnology could provide an innovative approach to address these challenges, and particularly, graphene-based and iron-based nanomaterials have shown remarkable results. Graphene-based nanomaterials are beneficial due to their vast specific surface area, superior electrical conductivity, and strong biocompatibility, while iron-based nanomaterials offer valuable redox potential and are readily accessible. Although many studies have investigated the role of nanomaterials in boosting anammox processes, a deeper understanding of the mechanisms through which nanomaterials promote anammox is essential for practical application. This study provided a comprehensive summary of the latest research on how graphene-based and iron-based nanomaterials improve anammox for nitrogen removal, enhance specific anammox activity (SAA), and increase the growth rate of anammox bacteria. We also discussed their role in enhancing system stability and integrating anammox with other nitrogen removal pathways. The mechanisms by which these nanomaterials enhance anammox are analyzed and compared, focusing on extracellular polymeric substances (EPS) formation, electron transfer, functional genes and enzymes, and quorum sensing (QS). Finally, the study outlined several potential directions for future development, including identifying challenges and proposing solutions.
中文翻译:
石墨烯基和铁基纳米材料增强厌氧氨氧化的性能和机制
厌氧氨氧化(anammox)是一种经济高效的生物脱氮技术,但其启动耗时且环境敏感性高是其广泛使用的主要障碍。尽管如此,纳米技术可以提供一种创新方法来应对这些挑战,特别是石墨烯基和铁基纳米材料已显示出显着的成果。石墨烯基纳米材料因其巨大的比表面积、优异的导电性和强大的生物相容性而具有优势,而铁基纳米材料则提供了宝贵的氧化还原电位并且易于获取。尽管许多研究已经研究了纳米材料在促进厌氧氨氧化过程中的作用,但更深入地了解纳米材料促进厌氧氨氧化的机制对于实际应用至关重要。该研究全面总结了石墨烯基和铁基纳米材料如何改善厌氧氨氧化脱氮、增强厌氧氨氧化比活性(SAA)、提高厌氧氨氧化菌生长速度的最新研究成果。我们还讨论了它们在增强系统稳定性以及将厌氧氨氧化与其他脱氮途径整合方面的作用。对这些纳米材料增强厌氧氨氧化的机制进行了分析和比较,重点是细胞外聚合物(EPS)的形成、电子转移、功能基因和酶以及群体感应(QS)。最后,该研究概述了未来发展的几个潜在方向,包括识别挑战和提出解决方案。