当前位置: X-MOL 学术Int. J. Hydrogen Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Hydrogen production from ZnCl2 salt: Application of chlor-alkali method
International Journal of Hydrogen Energy ( IF 8.1 ) Pub Date : 2024-09-24 , DOI: 10.1016/j.ijhydene.2024.09.158
Serdal Damarseckin

This experimental study investigates the efficiency of hydrogen production from an aqueous ZnCl2 solution using an electrochemical method within a chlor-alkali reactor. A laboratory-scale reactor with separate anode and cathode compartments was constructed for this purpose. The compartments are separated by a Nafion 212 membrane, which prevents the mixing of the anolyte and catholyte solutions while allowing the passage of positive ions (Zn+). Each compartment is equipped with five carbon rod electrodes. The anode chamber is fed with an aqueous ZnCl2 solution, while the cathode chamber is supplied with pure water. The experiments were conducted with a constant electrolyte transfer rate of 0.3g/s into the reactor, at three different cell voltages (5.0, 7.5, and 10.0V) and two different cell temperatures (20 °C and 45 °C). Due to the small reactor dimensions and the dilution effect caused by adding pure water to the cathode compartment which decreases electrolyte density and adversely affects the current a noticeable reduction in hydrogen gas production was observed. Furthermore, the ZnCl2 electrolyte mass flow rate did not significantly impact the current or the generation of hydrogen and chlorine gases. Consequently, no changes were made to the mass flow rate of pure water or the electrolyte. The presence of active chlorine gas was found to cause the erosion of the carbon rod electrodes in the anode chamber. As a result, the amount of chlorine gas produced in the anode chamber is significantly lower than the hydrogen gas produced in the cathode chamber. At a cell temperature of 20 °C, a mass flow rate of 0.3 g/s, and a cell voltage of 5 V with ZnCl2 aqueous solution, the minimum hydrogen production rate is 0.625 mL/min. In contrast, at a cell temperature of 45 °C, a mass flow rate of 0.3 g/s, and a cell voltage of 10 V, the maximum hydrogen production rate is 4.97 mL/min.

中文翻译:


ZnCl2 盐制氢:氯碱法的应用



本实验研究在氯碱反应器内使用电化学方法从氯化锌2 水溶液制氢的效率。为此,建造了一个具有独立阳极和阴极室的实验室规模反应器。隔室由 Nafion 212 膜隔开,可防止阳极液和阴极液混合,同时允许正离子 (Zn+) 通过。每个隔室配有 5 个碳棒电极。阳极室进料为 ZnCl2 水溶液,而阴极室则供应纯水。实验以 0.3g/s 的恒定电解质转移速率进入反应器,在三种不同的电池电压(5.0、7.5 和 10.0V)和两种不同的电池温度(20 °C 和 45 °C)下进行。由于反应器尺寸小,以及向阴极室添加纯水引起的稀释效应会降低电解质密度并对电流产生不利影响,因此观察到氢气产量明显减少。此外,ZnCl2 电解质质量流速对电流或氢气和氯气的产生没有显着影响。因此,纯水或电解质的质量流速没有变化。发现活性氯气的存在会导致阳极室中碳棒电极的腐蚀。因此,阳极室中产生的氯气量明显低于阴极室中产生的氢气。当电池温度为 20 °C,质量流速为 0.3 g/s,电池电压为 5 V,使用 ZnCl2 水溶液时,最小产氢速率为 0.625 mL/min。 相比之下,在电池温度为 45 °C、质量流速为 0.3 g/s 和电池电压为 10 V 时,最大制氢速率为 4.97 mL/min。
更新日期:2024-09-24
down
wechat
bug