当前位置: X-MOL 学术International Journal of Hospitality Management › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Smart service quality in hospitality – A quantitative assessment using MCDM and clustering methods
International Journal of Hospitality Management ( IF 9.9 ) Pub Date : 2024-09-24 , DOI: 10.1016/j.ijhm.2024.103931
Nur Ayvaz-Çavdaroğlu, Shilpa Iyanna, Monika Foster

Technology is transforming the Hospitality and Tourism (H&T) sector from a “high-touch, face-to-face” to a “high-tech, low-touch” service sector. This changing landscape necessitates a reconfiguration of the traditional service quality dimensions. To make the renowned Service Quality (SERVQUAL) model relevant in today’s dramatically different landscape, this study proposes an extended SERVQUAL framework that incorporates smart service quality as a key dimension. Using the best-worst method (BWM), the relative importance of the extended SERVQUAL dimensions is assessed from the consumers’ perspective. Furthermore, the discrepancies amongst different consumer groups are identified using latent class clustering. The findings identify rather balanced preference ratios across quality dimensions and age groups; yet, reliability is the most preferred service dimension, while smart service quality is the least. The analysis results imply several important insights into the weighted importance ranking of quality dimensions and the nuanced preferences of data-driven customer segments, being valuable both from theoretical and managerial perspectives.

中文翻译:


酒店业的智能服务质量 – 使用 MCDM 和聚类方法进行定量评估



技术正在将酒店和旅游 (H&T) 行业从“高接触、面对面”转变为“高科技、低接触”服务行业。这种不断变化的环境需要重新配置传统的服务质量维度。为了使著名的服务质量 (SERVQUAL) 模型与当今截然不同的环境相关,本研究提出了一个扩展的 SERVQUAL 框架,该框架将智能服务质量作为一个关键维度。使用最好-最差方法 (BWM),从消费者的角度评估扩展 SERVQUAL 维度的相对重要性。此外,使用潜在类聚类来识别不同消费者群体之间的差异。研究结果确定了质量维度和年龄组之间相当平衡的偏好比率;然而,可靠性是最受欢迎的服务维度,而智能服务质量是最差的。分析结果暗示了对质量维度的加权重要性排名和数据驱动的客户群的细微偏好的几个重要见解,从理论和管理角度来看都很有价值。
更新日期:2024-09-24
down
wechat
bug