当前位置: X-MOL 学术Geophys. Res. Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Automatic Monitoring of Rock-Slope Failures Using Distributed Acoustic Sensing and Semi-Supervised Learning
Geophysical Research Letters ( IF 4.6 ) Pub Date : 2024-09-28 , DOI: 10.1029/2024gl110672
Jiahui Kang, Fabian Walter, Patrick Paitz, Johannes Aichele, Pascal Edme, Lorenz Meier, Andreas Fichtner

Effective use of the wealth of information provided by Distributed Acoustic Sensing (DAS) for mass movement monitoring remains a challenge. We propose a semi-supervised neural network tailored to screen DAS data related to a series of rock collapses leading to a major failure of approximately 1.2 million m3${\mathrm{m}}^{3}$ on 15 June 2023 in Brienz, Eastern Switzerland. Besides DAS, the dataset from 16 May to 30 June 2023 includes Doppler radar data for partially ground-truth labeling. The proposed algorithm is capable of distinguishing between rock-slope failures and background noise, including road and train traffic, with a detection precision of over 95%$95\%$. It identifies hundreds of precursory failures and shows sustained detection hours before and during the major collapse. Event size and signal-to-noise ratio (SNR) are the key performance dependencies. As a critical part of our algorithm operates unsupervised, we suggest that it is suitable for general monitoring of natural hazards.

中文翻译:


使用分布式声学传感和半监督学习自动监测岩坡破坏



有效利用分布式声学传感 (DAS) 提供的大量信息来监测群众运动仍然是一个挑战。我们提出了一种半监督神经网络,专门用于筛选与一系列岩石崩塌相关的 DAS 数据,这些崩塌导致了大约 120 万次重大故障3 ${\mathrm{m}}^{3}$ 2023 年 6 月 15 日在瑞士东部布里恩茨举行。除了 DAS 之外,2023 年 5 月 16 日至 6 月 30 日的数据集还包括用于部分地面实况标记的多普勒雷达数据。该算法能够区分岩石边坡破坏和背景噪声(包括道路和火车交通),检测精度超过95 % $95\%$ 。它识别了数百个先兆故障,并显示了在重大崩溃之前和期间持续检测的几个小时。事件大小和信噪比 (SNR) 是关键的性能依赖性。由于我们算法的关键部分是在无人监督的情况下运行的,因此我们建议它适用于自然灾害的一般监测。
更新日期:2024-09-30
down
wechat
bug