当前位置:
X-MOL 学术
›
Case Stud. Therm. Eng.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
The numerical and experimental investigation of the transient behaviours of a lithium-ion pouch battery cell under dynamic conditions
Case Studies in Thermal Engineering ( IF 6.4 ) Pub Date : 2024-09-19 , DOI: 10.1016/j.csite.2024.105169 Berkay Tahirağaoğlu, Gökhan Sevilgen, Halil Sadettin Hamut
Case Studies in Thermal Engineering ( IF 6.4 ) Pub Date : 2024-09-19 , DOI: 10.1016/j.csite.2024.105169 Berkay Tahirağaoğlu, Gökhan Sevilgen, Halil Sadettin Hamut
In this paper, the transient model of a high energy density Lithium-ion pouch battery cell is developed under dynamic conditions. The battery cell has a capacity of 73 Ah and volumetric energy density of 642 Wh L−1 . This is one of the few studies included the electro-thermal behaviour of high energy density battery under transient conditions by using second ordered model. The transient model indicated that the state of charge (SOC) decreased by 7 % at the end of the WLTP driving cycle and this value is good agreement with the experimental data. Moreover, the developed model provides an accurate prediction of the terminal voltage with a R2 value of 0.99 and a maximum relative error of 2.0 %. Furthermore, the proposed model predicts the electro-thermal characteristics more precisely and the heat generation rate and the entropic term can also be determined without using measurement device. The calculated total heat emitted from battery is about 6W at 1 C-rate for constant current and the heat generation rate is a peak value of ±1.75 105 Wm−3 under dynamic conditions. By using the estimated heat generation rate, more effective cold plates will be designed for thermal management of high energy density battery cells.
中文翻译:
动态条件下锂离子软包电池瞬态行为的数值和实验研究
在本文中,开发了动态条件下高能量密度锂离子软包电池的瞬态模型。电池容量为73 Ah,体积能量密度为642 Wh L−1。这是利用二阶模型研究瞬态条件下高能量密度电池电热行为的少数研究之一。瞬态模型表明,WLTP 驾驶周期结束时荷电状态 (SOC) 下降了 7%,该值与实验数据吻合良好。此外,所开发的模型可以准确预测端电压,R2 值为 0.99,最大相对误差为 2.0%。此外,该模型更精确地预测电热特性,并且无需使用测量装置即可确定生热率和熵项。计算得出,恒流1C倍率下电池发出的总热量约为6W,动态条件下发热率峰值为±1.75 105 Wm−3。通过使用估计的发热率,将设计更有效的冷板,用于高能量密度电池的热管理。
更新日期:2024-09-19
中文翻译:
动态条件下锂离子软包电池瞬态行为的数值和实验研究
在本文中,开发了动态条件下高能量密度锂离子软包电池的瞬态模型。电池容量为73 Ah,体积能量密度为642 Wh L−1。这是利用二阶模型研究瞬态条件下高能量密度电池电热行为的少数研究之一。瞬态模型表明,WLTP 驾驶周期结束时荷电状态 (SOC) 下降了 7%,该值与实验数据吻合良好。此外,所开发的模型可以准确预测端电压,R2 值为 0.99,最大相对误差为 2.0%。此外,该模型更精确地预测电热特性,并且无需使用测量装置即可确定生热率和熵项。计算得出,恒流1C倍率下电池发出的总热量约为6W,动态条件下发热率峰值为±1.75 105 Wm−3。通过使用估计的发热率,将设计更有效的冷板,用于高能量密度电池的热管理。