当前位置:
X-MOL 学术
›
Case Stud. Therm. Eng.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Evaluation of heat transfer for unsteady thin film flow of mono and hybrid nanomaterials with five different shape features
Case Studies in Thermal Engineering ( IF 6.4 ) Pub Date : 2024-09-21 , DOI: 10.1016/j.csite.2024.105168
K. Sreelakshmi , G. Leena Rosalind Mary , Umar F. Alqsair , Ismail M.M. Elsemary , Rajab Alsayegh , Sami Ullah Khan , Lioua Kolsi
Case Studies in Thermal Engineering ( IF 6.4 ) Pub Date : 2024-09-21 , DOI: 10.1016/j.csite.2024.105168
K. Sreelakshmi , G. Leena Rosalind Mary , Umar F. Alqsair , Ismail M.M. Elsemary , Rajab Alsayegh , Sami Ullah Khan , Lioua Kolsi
Recent advancement in nanotechnology brings the idea of hybrid nanomaterials which offer distinguish applications in thermal reservoirs, cooling systems, energy applications, chemical engineering, vehicle engines etc. The understating of shape features for hybrid nanomaterials is quite essential as such consequences highly influenced various thermal properties like viscosity, thermal conductivity, optical properties, stability etc. The objective of current work is to examine heat transfer analysis due to thin film unsteady flow of hybrid nanofluid. The properties of hybrid nanofluid are justified for entertaining the copper ( C u ) , aluminium oxide ( A l 2 O 3 ) nanoparticles with water ( H 2 O ) base fluid. Additionally, applications of viscous dissipation, heat source and nonlinear radiated effects are attributed to current flow problem. The thermal properties of nanoparticles are examined in presence of five shape features consisting of blades, platelets, cylinders, bricks and spheres. Numerical simulations of problem are performed via Runge-Kutta-Fehlberg method. Comparative heat transfer is performed for mono nanofluid ( C u / H 2 O ) and hybrid nanofluid ( C u − A l 2 O 3 ) / / H 2 O . It has been observed that heat transfer enhancement is more stable for cylindrical particles as compared to spherical nanoparticles. The skin friction enhances due to Hartmann number for both mono nanofluid (MNF) and hybrid nanofluid (HNF). Current results claim applications in coating thin films, lubrication systems, improving the thermal efficiency in thermal and industrial systems, heat exchangers, cooling systems etc.
中文翻译:
具有 5 种不同形状特征的单晶和杂化纳米材料非稳态薄膜流动的传热评价
纳米技术的最新进展带来了混合纳米材料的想法,这些材料在热储层、冷却系统、能源应用、化学工程、汽车发动机等方面提供了独特的应用。低估混合纳米材料的形状特征非常重要,因为这些后果会极大地影响各种热性能,如粘度、导热性、光学性能、稳定性等。目前工作的目的是检查由于混合纳米流体的薄膜不稳定流动引起的传热分析。混合纳米流体的特性可用于将铜 (Cu)、氧化铝 (Al2O3) 纳米颗粒与水 (H2O) 基础流体进行娱乐。此外,粘性耗散、热源和非线性辐射效应的应用归因于电流问题。纳米颗粒的热性能是在由叶片、片状、圆柱体、砖状和球状组成的五个形状特征存在的情况下检查的。问题的数值模拟是通过 Runge-Kutta-Fehlberg 方法进行的。对单纳米流体 (Cu/H2O) 和混合纳米流体 (Cu-Al2O3)//H2O 进行了比较传热。据观察,与球形纳米颗粒相比,圆柱形颗粒的传热增强更稳定。由于单纳米流体 (MNF) 和混合纳米流体 (HNF) 的哈特曼数,皮肤摩擦力增强。目前的结果可用于涂覆薄膜、润滑系统、提高热和工业系统的热效率、热交换器、冷却系统等。
更新日期:2024-09-21
中文翻译:

具有 5 种不同形状特征的单晶和杂化纳米材料非稳态薄膜流动的传热评价
纳米技术的最新进展带来了混合纳米材料的想法,这些材料在热储层、冷却系统、能源应用、化学工程、汽车发动机等方面提供了独特的应用。低估混合纳米材料的形状特征非常重要,因为这些后果会极大地影响各种热性能,如粘度、导热性、光学性能、稳定性等。目前工作的目的是检查由于混合纳米流体的薄膜不稳定流动引起的传热分析。混合纳米流体的特性可用于将铜 (Cu)、氧化铝 (Al2O3) 纳米颗粒与水 (H2O) 基础流体进行娱乐。此外,粘性耗散、热源和非线性辐射效应的应用归因于电流问题。纳米颗粒的热性能是在由叶片、片状、圆柱体、砖状和球状组成的五个形状特征存在的情况下检查的。问题的数值模拟是通过 Runge-Kutta-Fehlberg 方法进行的。对单纳米流体 (Cu/H2O) 和混合纳米流体 (Cu-Al2O3)//H2O 进行了比较传热。据观察,与球形纳米颗粒相比,圆柱形颗粒的传热增强更稳定。由于单纳米流体 (MNF) 和混合纳米流体 (HNF) 的哈特曼数,皮肤摩擦力增强。目前的结果可用于涂覆薄膜、润滑系统、提高热和工业系统的热效率、热交换器、冷却系统等。