当前位置:
X-MOL 学术
›
Case Stud. Therm. Eng.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Evaluation of heat transfer for unsteady thin film flow of mono and hybrid nanomaterials with five different shape features
Case Studies in Thermal Engineering ( IF 6.4 ) Pub Date : 2024-09-21 , DOI: 10.1016/j.csite.2024.105168 K. Sreelakshmi, G. Leena Rosalind Mary, Umar F. Alqsair, Ismail M.M. Elsemary, Rajab Alsayegh, Sami Ullah Khan, Lioua Kolsi
Case Studies in Thermal Engineering ( IF 6.4 ) Pub Date : 2024-09-21 , DOI: 10.1016/j.csite.2024.105168 K. Sreelakshmi, G. Leena Rosalind Mary, Umar F. Alqsair, Ismail M.M. Elsemary, Rajab Alsayegh, Sami Ullah Khan, Lioua Kolsi
Recent advancement in nanotechnology brings the idea of hybrid nanomaterials which offer distinguish applications in thermal reservoirs, cooling systems, energy applications, chemical engineering, vehicle engines etc. The understating of shape features for hybrid nanomaterials is quite essential as such consequences highly influenced various thermal properties like viscosity, thermal conductivity, optical properties, stability etc. The objective of current work is to examine heat transfer analysis due to thin film unsteady flow of hybrid nanofluid. The properties of hybrid nanofluid are justified for entertaining the copper ( C u ) , aluminium oxide ( A l 2 O 3 ) nanoparticles with water ( H 2 O ) base fluid. Additionally, applications of viscous dissipation, heat source and nonlinear radiated effects are attributed to current flow problem. The thermal properties of nanoparticles are examined in presence of five shape features consisting of blades, platelets, cylinders, bricks and spheres. Numerical simulations of problem are performed via Runge-Kutta-Fehlberg method. Comparative heat transfer is performed for mono nanofluid ( C u / H 2 O ) and hybrid nanofluid ( C u − A l 2 O 3 ) / / H 2 O . It has been observed that heat transfer enhancement is more stable for cylindrical particles as compared to spherical nanoparticles. The skin friction enhances due to Hartmann number for both mono nanofluid (MNF) and hybrid nanofluid (HNF). Current results claim applications in coating thin films, lubrication systems, improving the thermal efficiency in thermal and industrial systems, heat exchangers, cooling systems etc.
中文翻译:
具有五种不同形状特征的单一和杂化纳米材料非稳态薄膜流的传热评估
纳米技术的最新进展带来了混合纳米材料的想法,它在热储层、冷却系统、能源应用、化学工程、车辆发动机等方面提供了独特的应用。对混合纳米材料形状特征的了解非常重要,因为这种结果极大地影响了各种热性能如粘度、导热性、光学性质、稳定性等。当前工作的目的是检查混合纳米流体薄膜非稳态流动引起的传热分析。混合纳米流体的特性证明可以将铜 (Cu)、氧化铝 (Al2O3) 纳米颗粒与水 (H2O) 基液混合。此外,粘性耗散、热源和非线性辐射效应的应用都归因于电流问题。在存在五种形状特征(包括叶片、片状、圆柱体、砖块和球体)的情况下检查纳米颗粒的热性质。通过龙格-库塔-菲尔伯格方法对问题进行数值模拟。对单一纳米流体 (Cu/H2O) 和混合纳米流体 (Cu−Al2O3)//H2O 进行传热对比。据观察,与球形纳米颗粒相比,圆柱形颗粒的传热增强更稳定。由于单一纳米流体(MNF)和混合纳米流体(HNF)的哈特曼数,皮肤摩擦力增强。目前的结果声称可应用于涂层薄膜、润滑系统、提高热力和工业系统、热交换器、冷却系统等的热效率。
更新日期:2024-09-21
中文翻译:
具有五种不同形状特征的单一和杂化纳米材料非稳态薄膜流的传热评估
纳米技术的最新进展带来了混合纳米材料的想法,它在热储层、冷却系统、能源应用、化学工程、车辆发动机等方面提供了独特的应用。对混合纳米材料形状特征的了解非常重要,因为这种结果极大地影响了各种热性能如粘度、导热性、光学性质、稳定性等。当前工作的目的是检查混合纳米流体薄膜非稳态流动引起的传热分析。混合纳米流体的特性证明可以将铜 (Cu)、氧化铝 (Al2O3) 纳米颗粒与水 (H2O) 基液混合。此外,粘性耗散、热源和非线性辐射效应的应用都归因于电流问题。在存在五种形状特征(包括叶片、片状、圆柱体、砖块和球体)的情况下检查纳米颗粒的热性质。通过龙格-库塔-菲尔伯格方法对问题进行数值模拟。对单一纳米流体 (Cu/H2O) 和混合纳米流体 (Cu−Al2O3)//H2O 进行传热对比。据观察,与球形纳米颗粒相比,圆柱形颗粒的传热增强更稳定。由于单一纳米流体(MNF)和混合纳米流体(HNF)的哈特曼数,皮肤摩擦力增强。目前的结果声称可应用于涂层薄膜、润滑系统、提高热力和工业系统、热交换器、冷却系统等的热效率。