当前位置:
X-MOL 学术
›
Case Stud. Therm. Eng.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Effects of corrugation on convective heat transfer and power generation in a wavy walled triangular cavity equipped with inclined elastic fin and piezo-energy harvester assembly
Case Studies in Thermal Engineering ( IF 6.4 ) Pub Date : 2024-09-19 , DOI: 10.1016/j.csite.2024.105126 Fatih Selimefendigil, Hakan F. Oztop
Case Studies in Thermal Engineering ( IF 6.4 ) Pub Date : 2024-09-19 , DOI: 10.1016/j.csite.2024.105126 Fatih Selimefendigil, Hakan F. Oztop
Piezoelectric energy harvesters are one of the energy conversion technologies that can be used to convert a variety of external sources, including wind, fluid motion, and vibrations, into electrical energy. This work suggests a novel wall corrugation design in addition to an elastic fin piezo assembly arrangement for power generation and thermal management in a triangular cavity during turbulent forced convection of air. Using the finite element method with ALE, the analysis is conducted for different values of fin inclination (γ between 0 and 60), corrugation amplitude (Af between 0.01H and 0.06H), corrugation frequency (Nf between 1 and 20) and fin distance from the mid-point of the inclined wall in wall direction. The average Nusselt number (Nu) and generated power (PW) show a non-linear increasing trend with increasing fin tilt. Average Nu increment factor becomes 5.17 with the highest fin inclination while the power increments become 11.6 and 4.46 when rising inclination from 30 to 45 and from 45 to 60. The generated power rises with higher corrugation amplitude and wave number. However, increasing the wave number results in thermal performance degradation. Increment of average Nu becomes 1.17 with highest corrugation amplitude while it declines by a factor of 10.3 at the highest wave number. Power enhancement factors of 5.73 and 2.32 are obtained by increasing the corrugation amplitude from Af = 0.0714H to Af = 0.1786H and from Af = 0.1786H to Af = 0.2143H. When fin positions sf = 0.7143H and sf = -0.7143H are compared with the case of fin location at sf = 0, the power increment factors become 12.27 and 4.76, respectively. For the power produced by the piezo device, a polynomial type correlation is suggested by adjusting the parameters of the corrugated wall.
中文翻译:
波纹对配备倾斜弹性翅片和压电能量收集器组件的波壁三角腔内对流传热和发电的影响
压电能量采集器是能量转换技术之一,可用于将各种外部源(包括风、流体运动和振动)转换为电能。这项工作提出了一种新颖的壁波纹设计以及弹性翅片压电组件布置,用于在空气湍流强制对流期间在三角形空腔中进行发电和热管理。使用 ALE 有限元方法,对不同值的翅片倾角(γ 在 0 到 60 之间)、波纹幅度(Af 在 0.01H 到 0.06H 之间)、波纹频率(Nf 在 1 到 20 之间)和翅片距离进行分析从倾斜墙的中点沿墙方向。随着鳍片倾斜度的增加,平均努塞尔数(Nu)和发电功率(PW)呈现非线性增加趋势。当翅片倾角最大时,平均Nu增量因子变为5.17,而当倾角从30增加到45和从45增加到60时,功率增量分别变为11.6和4.46。产生的功率随着波纹幅度和波数的增加而增加。然而,增加波数会导致热性能下降。波纹振幅最高时,平均Nu增量为1.17,而波数最高时,平均Nu增量为10.3倍。通过将波纹振幅从 Af = 0.0714H 增加到 Af = 0.1786H,以及从 Af = 0.1786H 增加到 Af = 0.2143H,可以获得 5.73 和 2.32 的功率增强系数。当鳍位置sf = 0.7143H和sf = -0.7143H与鳍位置sf = 0的情况进行比较时,功率增量因子分别变为12.27和4.76。对于压电器件产生的功率,通过调整波纹壁的参数建议采用多项式相关性。
更新日期:2024-09-19
中文翻译:
波纹对配备倾斜弹性翅片和压电能量收集器组件的波壁三角腔内对流传热和发电的影响
压电能量采集器是能量转换技术之一,可用于将各种外部源(包括风、流体运动和振动)转换为电能。这项工作提出了一种新颖的壁波纹设计以及弹性翅片压电组件布置,用于在空气湍流强制对流期间在三角形空腔中进行发电和热管理。使用 ALE 有限元方法,对不同值的翅片倾角(γ 在 0 到 60 之间)、波纹幅度(Af 在 0.01H 到 0.06H 之间)、波纹频率(Nf 在 1 到 20 之间)和翅片距离进行分析从倾斜墙的中点沿墙方向。随着鳍片倾斜度的增加,平均努塞尔数(Nu)和发电功率(PW)呈现非线性增加趋势。当翅片倾角最大时,平均Nu增量因子变为5.17,而当倾角从30增加到45和从45增加到60时,功率增量分别变为11.6和4.46。产生的功率随着波纹幅度和波数的增加而增加。然而,增加波数会导致热性能下降。波纹振幅最高时,平均Nu增量为1.17,而波数最高时,平均Nu增量为10.3倍。通过将波纹振幅从 Af = 0.0714H 增加到 Af = 0.1786H,以及从 Af = 0.1786H 增加到 Af = 0.2143H,可以获得 5.73 和 2.32 的功率增强系数。当鳍位置sf = 0.7143H和sf = -0.7143H与鳍位置sf = 0的情况进行比较时,功率增量因子分别变为12.27和4.76。对于压电器件产生的功率,通过调整波纹壁的参数建议采用多项式相关性。