当前位置:
X-MOL 学术
›
Case Stud. Therm. Eng.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Thermal transport characteristics of buoyancy-driven couple-stress bioconvective liquid when gyrotactic microorganisms and transpiration effect are significant
Case Studies in Thermal Engineering ( IF 6.4 ) Pub Date : 2024-09-17 , DOI: 10.1016/j.csite.2024.105111 Mhamed Benaissa, M. Waqas, S. Saleem, Nurnadiah Zamri, Dyana Aziz Bayz, Shirin Shomurotova, Nidhal Ben Khedher
Case Studies in Thermal Engineering ( IF 6.4 ) Pub Date : 2024-09-17 , DOI: 10.1016/j.csite.2024.105111 Mhamed Benaissa, M. Waqas, S. Saleem, Nurnadiah Zamri, Dyana Aziz Bayz, Shirin Shomurotova, Nidhal Ben Khedher
Heat transportation is an influential aspect regarding heating or cooling an object. The undue heat engendered necessities to be either released or elevated for functioning of a mechanism to oeuvre in an optimal situation. Liquid coolants are utilized to diminish heat on mechanisms like processors and in numerous industries for illustration electronics and automotive. Besides, the significance of bioconvection aspect can be noticed in numerous micro-heating cylinders and bio-microsystems comprising micro-reactors which are utilized in biotechnology for enzyme bio-sensors, mass transportation etc. Such significance of nanofluids together with bioconvection aspect motivate us to investigate the couple-stress laminar flow based on Buongiorno's model of nanofluids. Stretchable magnetized surface with suction/injection and thermal radiation creates the convected flow. Energy expression encompasses heat sink and source aspects. Mass transfer captures chemical reaction effects. The novel bioconvection phenomenon based on gyrotactic microorganisms is introduced. The governing systems representing the rheological expressions of couple-stress liquid are simplified and rendered to the ordinary ones under transformation procedure. The well-known computational scheme (i.e., HAM (homotopy analysis method)) is employed to obtain the convergent solutions. Besides, the analysis of dimensionless quantities is elaborated via graphs. The analytical results computed via homotopy algorithm are compared with alternate numerical algorithm and found reasonably consistent with numerical results. Besides, it is witnessed that increasing radiation factor, solutal Biot number, chemical reaction factor, microorganisms concentration difference and bioconvective Schmidt number yields higher heat-mass-microorganisms transference rates respectively while heat-transference dwindles when thermal source factor is augmented.
中文翻译:
旋回微生物和蒸腾效应显着时浮力驱动偶应力生物对流液体的传热特性
热传输是有关加热或冷却物体的一个有影响力的方面。过度的热量导致需要释放或升高,以使机制在最佳情况下发挥作用。液体冷却剂用于减少处理器等机械装置上的热量,以及在电子和汽车等众多行业中的应用。此外,生物对流方面的重要性可以在许多微加热缸和包含微反应器的生物微系统中注意到,这些微反应器用于生物技术中的酶生物传感器、质量运输等。纳米流体与生物对流方面的重要性促使我们基于 Buongiorno 纳米流体模型研究耦合应力层流。可拉伸的磁化表面具有抽吸/注射和热辐射,可产生对流。能量表达包括散热器和源方面。传质捕获化学反应效应。介绍了基于旋转微生物的新型生物对流现象。代表偶应力液体流变表达式的控制系统在变换过程中被简化并转化为普通系统。采用众所周知的计算方案(即HAM(同伦分析法))来获得收敛解。此外,通过图表详细阐述了无量纲量的分析。通过同伦算法计算的解析结果与其他数值算法进行了比较,发现与数值结果相当一致。 此外,我们还发现,增加辐射因子、溶液毕奥数、化学反应因子、微生物浓度差和生物对流施密特数分别会产生较高的热质微生物传递速率,而当热源因子增大时,传热会减少。
更新日期:2024-09-17
中文翻译:
旋回微生物和蒸腾效应显着时浮力驱动偶应力生物对流液体的传热特性
热传输是有关加热或冷却物体的一个有影响力的方面。过度的热量导致需要释放或升高,以使机制在最佳情况下发挥作用。液体冷却剂用于减少处理器等机械装置上的热量,以及在电子和汽车等众多行业中的应用。此外,生物对流方面的重要性可以在许多微加热缸和包含微反应器的生物微系统中注意到,这些微反应器用于生物技术中的酶生物传感器、质量运输等。纳米流体与生物对流方面的重要性促使我们基于 Buongiorno 纳米流体模型研究耦合应力层流。可拉伸的磁化表面具有抽吸/注射和热辐射,可产生对流。能量表达包括散热器和源方面。传质捕获化学反应效应。介绍了基于旋转微生物的新型生物对流现象。代表偶应力液体流变表达式的控制系统在变换过程中被简化并转化为普通系统。采用众所周知的计算方案(即HAM(同伦分析法))来获得收敛解。此外,通过图表详细阐述了无量纲量的分析。通过同伦算法计算的解析结果与其他数值算法进行了比较,发现与数值结果相当一致。 此外,我们还发现,增加辐射因子、溶液毕奥数、化学反应因子、微生物浓度差和生物对流施密特数分别会产生较高的热质微生物传递速率,而当热源因子增大时,传热会减少。