当前位置:
X-MOL 学术
›
Case Stud. Therm. Eng.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Thermal transport characteristics of buoyancy-driven couple-stress bioconvective liquid when gyrotactic microorganisms and transpiration effect are significant
Case Studies in Thermal Engineering ( IF 6.4 ) Pub Date : 2024-09-17 , DOI: 10.1016/j.csite.2024.105111
Mhamed Benaissa , M. Waqas , S. Saleem , Nurnadiah Zamri , Dyana Aziz Bayz , Shirin Shomurotova , Nidhal Ben Khedher
Case Studies in Thermal Engineering ( IF 6.4 ) Pub Date : 2024-09-17 , DOI: 10.1016/j.csite.2024.105111
Mhamed Benaissa , M. Waqas , S. Saleem , Nurnadiah Zamri , Dyana Aziz Bayz , Shirin Shomurotova , Nidhal Ben Khedher
Heat transportation is an influential aspect regarding heating or cooling an object. The undue heat engendered necessities to be either released or elevated for functioning of a mechanism to oeuvre in an optimal situation. Liquid coolants are utilized to diminish heat on mechanisms like processors and in numerous industries for illustration electronics and automotive. Besides, the significance of bioconvection aspect can be noticed in numerous micro-heating cylinders and bio-microsystems comprising micro-reactors which are utilized in biotechnology for enzyme bio-sensors, mass transportation etc. Such significance of nanofluids together with bioconvection aspect motivate us to investigate the couple-stress laminar flow based on Buongiorno's model of nanofluids. Stretchable magnetized surface with suction/injection and thermal radiation creates the convected flow. Energy expression encompasses heat sink and source aspects. Mass transfer captures chemical reaction effects. The novel bioconvection phenomenon based on gyrotactic microorganisms is introduced. The governing systems representing the rheological expressions of couple-stress liquid are simplified and rendered to the ordinary ones under transformation procedure. The well-known computational scheme (i.e., HAM (homotopy analysis method)) is employed to obtain the convergent solutions. Besides, the analysis of dimensionless quantities is elaborated via graphs. The analytical results computed via homotopy algorithm are compared with alternate numerical algorithm and found reasonably consistent with numerical results. Besides, it is witnessed that increasing radiation factor, solutal Biot number, chemical reaction factor, microorganisms concentration difference and bioconvective Schmidt number yields higher heat-mass-microorganisms transference rates respectively while heat-transference dwindles when thermal source factor is augmented.
中文翻译:
当回旋微生物和蒸腾效应显著时,浮力驱动的耦合应力生物对流液体的热传输特性
热传递是加热或冷却物体的一个有影响的方面。过度的热量产生了需要被释放或升高的必需品,以便机制在最佳情况下运作。液体冷却剂用于减少处理器等机构的热量,并在许多行业中用于插图、电子和汽车。此外,在许多微加热圆筒和生物微系统中可以注意到生物对流方面的重要性,这些微系统包括微反应器,用于生物技术中的酶生物传感器、质量运输等。纳米流体的这种重要性以及生物对流方面促使我们基于 Buongiorno 的纳米流体模型研究耦合应力层流。具有吸力/注射和热辐射的可拉伸磁化表面产生对流。能量表达包括散热器和源方面。传质捕获化学反应效应。介绍了基于回旋微生物的新型生物对流现象。在转化过程中,简化表示耦合应力液体流变表达式的调控系统并转化为普通系统。采用众所周知的计算方案(即 HAM(同伦分析方法))来获得收敛解。此外,无量纲量的分析是通过图形详细说明的。将通过同伦算法计算的分析结果与替代数值算法进行比较,发现与数值结果合理一致。 此外,当热源因子增加时,辐射因子、溶质 Biot 数、化学反应因子、微生物浓度差和生物对流 Schmidt 数的增加分别产生更高的热-质量-微生物传递速率,而热传递减少。
更新日期:2024-09-17
中文翻译:

当回旋微生物和蒸腾效应显著时,浮力驱动的耦合应力生物对流液体的热传输特性
热传递是加热或冷却物体的一个有影响的方面。过度的热量产生了需要被释放或升高的必需品,以便机制在最佳情况下运作。液体冷却剂用于减少处理器等机构的热量,并在许多行业中用于插图、电子和汽车。此外,在许多微加热圆筒和生物微系统中可以注意到生物对流方面的重要性,这些微系统包括微反应器,用于生物技术中的酶生物传感器、质量运输等。纳米流体的这种重要性以及生物对流方面促使我们基于 Buongiorno 的纳米流体模型研究耦合应力层流。具有吸力/注射和热辐射的可拉伸磁化表面产生对流。能量表达包括散热器和源方面。传质捕获化学反应效应。介绍了基于回旋微生物的新型生物对流现象。在转化过程中,简化表示耦合应力液体流变表达式的调控系统并转化为普通系统。采用众所周知的计算方案(即 HAM(同伦分析方法))来获得收敛解。此外,无量纲量的分析是通过图形详细说明的。将通过同伦算法计算的分析结果与替代数值算法进行比较,发现与数值结果合理一致。 此外,当热源因子增加时,辐射因子、溶质 Biot 数、化学反应因子、微生物浓度差和生物对流 Schmidt 数的增加分别产生更高的热-质量-微生物传递速率,而热传递减少。