当前位置:
X-MOL 学术
›
Comput. Sci. Rev.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
A survey of automated negotiation: Human factor, learning, and application
Computer Science Review ( IF 13.3 ) Pub Date : 2024-09-28 , DOI: 10.1016/j.cosrev.2024.100683 Xudong Luo, Yanling Li, Qiaojuan Huang, Jieyu Zhan
Computer Science Review ( IF 13.3 ) Pub Date : 2024-09-28 , DOI: 10.1016/j.cosrev.2024.100683 Xudong Luo, Yanling Li, Qiaojuan Huang, Jieyu Zhan
The burgeoning field of automated negotiation systems represents a transformative approach to resolving conflicts and allocating resources with enhanced efficiency. This paper presents a thorough survey of this discipline, emphasising the implications of human factors, the application of machine learning techniques, and the real-world deployments of these systems. In traditional manual negotiation, various challenges emerge, including limited negotiation skills, power asymmetries, personality disparities, and cultural influences. Automated negotiation systems can offer solutions to these challenges through their round-the-clock availability, the ability to negotiate without emotional bias, efficient information access, and seamless integration of cultural contexts. This comprehensive survey delves into the intricacies of human–computer negotiation, shedding light on the impact of emotional cues, cultural diversity, and the subtleties of language. Furthermore, the study reviews the incorporation of machine learning models that facilitate the adaptation of negotiation strategies. The paper also discusses the application of fuzzy set theory and fuzzy constraint methods within the scope of automated negotiation, providing a valuable addition to the existing literature. Real-world deployment of these systems in domains e.g., e-commerce, conflict resolution, and multi-agent systems is also examined. By providing a broad overview of automated negotiation, this survey acknowledges the vital role of human factors in negotiation processes, underscores the value of intelligent and adaptive negotiation techniques and offers valuable insights into the practical applications of these systems in various real-world contexts.
中文翻译:
自动谈判调查:人为因素、学习和应用
自动谈判系统这一新兴领域代表了一种以更高的效率解决冲突和分配资源的变革性方法。本文对这门学科进行了全面的调查,强调了人为因素的影响、机器学习技术的应用以及这些系统的实际部署。在传统的人工谈判中,会出现各种挑战,包括谈判技巧有限、权力不对称、性格差异和文化影响。自动谈判系统可以通过其全天候可用性、无情绪偏见的谈判能力、高效的信息访问以及文化背景的无缝集成来为这些挑战提供解决方案。这项全面的调查深入探讨了人机协商的复杂性,阐明了情感线索的影响、文化多样性和语言的微妙之处。此外,该研究还回顾了促进谈判策略调整的机器学习模型的整合。本文还讨论了模糊集论和模糊约束方法在自动协商范围内的应用,为现有文献提供了有价值的补充。还检查了这些系统在电子商务、冲突解决和多代理系统等领域的实际部署。通过提供对自动谈判的广泛概述,该调查承认人为因素在谈判过程中的重要作用,强调了智能和自适应谈判技术的价值,并为这些系统在各种实际环境中的实际应用提供了有价值的见解。
更新日期:2024-09-28
中文翻译:
自动谈判调查:人为因素、学习和应用
自动谈判系统这一新兴领域代表了一种以更高的效率解决冲突和分配资源的变革性方法。本文对这门学科进行了全面的调查,强调了人为因素的影响、机器学习技术的应用以及这些系统的实际部署。在传统的人工谈判中,会出现各种挑战,包括谈判技巧有限、权力不对称、性格差异和文化影响。自动谈判系统可以通过其全天候可用性、无情绪偏见的谈判能力、高效的信息访问以及文化背景的无缝集成来为这些挑战提供解决方案。这项全面的调查深入探讨了人机协商的复杂性,阐明了情感线索的影响、文化多样性和语言的微妙之处。此外,该研究还回顾了促进谈判策略调整的机器学习模型的整合。本文还讨论了模糊集论和模糊约束方法在自动协商范围内的应用,为现有文献提供了有价值的补充。还检查了这些系统在电子商务、冲突解决和多代理系统等领域的实际部署。通过提供对自动谈判的广泛概述,该调查承认人为因素在谈判过程中的重要作用,强调了智能和自适应谈判技术的价值,并为这些系统在各种实际环境中的实际应用提供了有价值的见解。