当前位置:
X-MOL 学术
›
Biomass Bioenergy
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Activation of poplar sawdust and anthracite coal: Distinct involvement of aliphatic and aromatic structures in pore development
Biomass & Bioenergy ( IF 5.8 ) Pub Date : 2024-09-24 , DOI: 10.1016/j.biombioe.2024.107392 Chao Li, Yifan Sun, Yuchen Jiang, Yuewen Shao, Guoming Gao, Shu Zhang, Yonggui Tang, Dong Wang, Xun Hu
Biomass & Bioenergy ( IF 5.8 ) Pub Date : 2024-09-24 , DOI: 10.1016/j.biombioe.2024.107392 Chao Li, Yifan Sun, Yuchen Jiang, Yuewen Shao, Guoming Gao, Shu Zhang, Yonggui Tang, Dong Wang, Xun Hu
Coal and biomass are two important carbonaceous feedstocks for producing carbon materials. Distinct composition of them might affect pore development of resulting activated carbon (AC) during activation. This was investigated herein via activating anthracite coal and poplar biomass via physical activation (activators: CO2 and H2 O) and chemical activation (activators: K2 C2 O4 and ZnCl2 ) under the same conditions. The results indicated that the activation of highly aromatic coal produced much higher yield of AC than that from poplar sawdust (ca. 90 % versus ca. 25–37 %). Nonetheless, this was at the cost of limited development of pore structure of AC-coal (121.1 m2 g-1 with K2 C2 O4 and 190.8 m2 g-1 with H2 O as an activator). Conversely, abundant aliphatics in poplar created more developed pore structures in AC-poplar (949.0 m2 g-1 with K2 C2 O4 and 588.6 m2 g-1 with H2 O), which also enhanced yields of AC-poplar through condensation reactions catalyzed with ZnCl2 (AC yield: 33.7 % vs 22.8 % from blank experiment). The fused ring structures in coal were hardly activated via cracking with K2 C2 O4 . However, H2 O could oxidize some carbonaceous organics on AC-coal, introducing oxygen-containing species, further cracking of which formed pores. This was an important route for generating pore structures in AC-coal.
中文翻译:
杨锯末和无烟煤的活化:脂肪族和芳香族结构在孔隙发育中的明显参与
煤和生物质是生产碳材料的两种重要的碳质原料。它们的不同组成可能会影响活化过程中所得活性炭(AC)的孔隙发育。本文通过在相同条件下通过物理活化(活化剂:CO2 和 H2O)和化学活化(活化剂:K2C2O4 和 ZnCl2)活化无烟煤和杨木生物质来研究这一点。结果表明,高芳香煤的活化产生的活性炭产率远高于杨木锯末的活性炭产率(约 90% 与约 25-37%)。尽管如此,这是以AC-煤的孔隙结构发展有限为代价的(用K2C2O4为121.1 m2g-1,用H2O作为活化剂为190.8 m2g-1)。相反,杨树中丰富的脂肪族化合物在AC-杨树中创造了更发达的孔隙结构(K2C2O4为949.0 m2g-1,H2O为588.6 m2g-1),这也通过ZnCl2催化的缩合反应提高了AC-杨树的产率(AC产率:33.7) % vs 空白实验的 22.8%)。煤中的稠环结构很难通过K2C2O4 裂解而活化。然而,H2O会氧化AC煤上的一些碳质有机物,引入含氧物质,进一步裂解形成孔隙。这是在AC煤中产生孔隙结构的重要途径。
更新日期:2024-09-24
中文翻译:
杨锯末和无烟煤的活化:脂肪族和芳香族结构在孔隙发育中的明显参与
煤和生物质是生产碳材料的两种重要的碳质原料。它们的不同组成可能会影响活化过程中所得活性炭(AC)的孔隙发育。本文通过在相同条件下通过物理活化(活化剂:CO2 和 H2O)和化学活化(活化剂:K2C2O4 和 ZnCl2)活化无烟煤和杨木生物质来研究这一点。结果表明,高芳香煤的活化产生的活性炭产率远高于杨木锯末的活性炭产率(约 90% 与约 25-37%)。尽管如此,这是以AC-煤的孔隙结构发展有限为代价的(用K2C2O4为121.1 m2g-1,用H2O作为活化剂为190.8 m2g-1)。相反,杨树中丰富的脂肪族化合物在AC-杨树中创造了更发达的孔隙结构(K2C2O4为949.0 m2g-1,H2O为588.6 m2g-1),这也通过ZnCl2催化的缩合反应提高了AC-杨树的产率(AC产率:33.7) % vs 空白实验的 22.8%)。煤中的稠环结构很难通过K2C2O4 裂解而活化。然而,H2O会氧化AC煤上的一些碳质有机物,引入含氧物质,进一步裂解形成孔隙。这是在AC煤中产生孔隙结构的重要途径。