当前位置:
X-MOL 学术
›
Trends Cogn. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Counterfactual simulation in causal cognition
Trends in Cognitive Sciences ( IF 16.7 ) Pub Date : 2024-05-21 , DOI: 10.1016/j.tics.2024.04.012 Tobias Gerstenberg
Trends in Cognitive Sciences ( IF 16.7 ) Pub Date : 2024-05-21 , DOI: 10.1016/j.tics.2024.04.012 Tobias Gerstenberg
How do people make causal judgments and assign responsibility? In this review article, I argue that counterfactual simulations are key. To simulate counterfactuals, we need three ingredients: a generative mental model of the world, the ability to perform interventions on that model, and the capacity to simulate the consequences of these interventions. The counterfactual simulation model (CSM) uses these ingredients to capture people’s intuitive understanding of the physical and social world. In the physical domain, the CSM predicts people’s causal judgments about dynamic collision events, complex situations that involve multiple causes, omissions as causes, and causes that sustain physical stability. In the social domain, the CSM predicts responsibility judgments in helping and hindering scenarios.
中文翻译:
因果认知中的反事实模拟
人们如何做出因果判断并分配责任?在这篇评论文章中,我认为反事实模拟是关键。为了模拟反事实,我们需要三个要素:世界的生成心理模型、对该模型进行干预的能力以及模拟这些干预结果的能力。反事实模拟模型(CSM)使用这些成分来捕捉人们对物理和社会世界的直观理解。在物理领域,CSM预测人们对动态碰撞事件、涉及多种原因的复杂情况、作为原因的遗漏以及维持物理稳定的原因的因果判断。在社会领域,CSM 预测帮助和阻碍场景中的责任判断。
更新日期:2024-05-21
中文翻译:
因果认知中的反事实模拟
人们如何做出因果判断并分配责任?在这篇评论文章中,我认为反事实模拟是关键。为了模拟反事实,我们需要三个要素:世界的生成心理模型、对该模型进行干预的能力以及模拟这些干预结果的能力。反事实模拟模型(CSM)使用这些成分来捕捉人们对物理和社会世界的直观理解。在物理领域,CSM预测人们对动态碰撞事件、涉及多种原因的复杂情况、作为原因的遗漏以及维持物理稳定的原因的因果判断。在社会领域,CSM 预测帮助和阻碍场景中的责任判断。