当前位置:
X-MOL 学术
›
Process Saf. Environ. Prot.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Constructing the positive electrostatic environments by nanosheet in mixed matrix membranes for efficient CO2 separation
Process Safety and Environmental Protection ( IF 6.9 ) Pub Date : 2024-09-21 , DOI: 10.1016/j.psep.2024.09.073 Yong Zhang, Kang Li, Chao Liang, Zhaomin Li, Xueqin Li
Process Safety and Environmental Protection ( IF 6.9 ) Pub Date : 2024-09-21 , DOI: 10.1016/j.psep.2024.09.073 Yong Zhang, Kang Li, Chao Liang, Zhaomin Li, Xueqin Li
Mixed Matrix Membranes (MMMs) have shown advantages in overcoming trade-off effects, but there is still an urgent need to enhance CO2 separation performance in the design of multifunctional fillers. To overcome the trade-off effects in MMMs, a rational design of fillers with selective recognition for CO2 molecules is an effective strategy. A microporous nanosheet Qc-5-Cu was synthesized and incorporated into a Pebax MH 1657 (Pebax) to prepare MMMs for efficiently separating CO2 from CH4 . The H atoms of the aromatic rings on the surface of pores in Qc-5-Cu constructed positive electrostatic environments, which significantly improves the CO2 /CH4 separation performance of MMMs. On one hand, the constructed positive electrostatic environments in the MMMs attracted the negatively charged O atoms of CO2 molecules through electrostatic attraction, which effectively accelerated CO2 transport. On the other hand, the positive electrostatic environments established a selective barrier for preventing CH4 transport, achieving high CO2 /CH4 selectivity in MMMs. Compared to pure Pebax membrane, the Pebax/Qc-5-Cu-0.5 MMM exhibited a remarkable enhancement of 99.52 % in CO2 permeability (934.24 Barrer) and a significant increase of 37.64 % in CO2 /CH4 selectivity (25.01). The constructed positive electrostatic environments of nanosheets in MMMs offers a potential prospect for efficient CO2 /CH4 separation.
中文翻译:
通过在混合基质膜中的纳米片构建正静电环境以实现高效的 CO2 分离
混合基质膜 (MMM) 在克服权衡效应方面已显示出优势,但在多功能填料的设计中仍迫切需要提高 CO2 分离性能。为了克服 MMMs 中的权衡效应,合理设计具有 CO2 分子选择性识别的填料是一种有效的策略。合成微孔纳米片 Qc-5-Cu 并将其掺入 Pebax MH 1657 (Pebax) 中,以制备用于从 CH4 中有效分离 CO2 的 MMM。Qc-5-Cu 中孔隙表面芳香环的 H 原子构建了正静电环境,显著提高了 MMMs 的 CO2/CH4 分离性能。一方面,MMMs 中构建的正静电环境通过静电吸引吸引 CO2 分子带负电荷的 O 原子,从而有效加速了 CO2 的传输。另一方面,正静电环境为防止 CH4 运输建立了选择性屏障,在 MMMs 中实现了高 CO2/CH4 选择性。与纯 Pebax 膜相比,Pebax/Qc-5-Cu-0.5 MMM 的 CO2 渗透性显著提高了 99.52% (934.24 Barrer),CO2/CH4 选择性显著提高了 37.64% (25.01)。在 MMMs 中构建纳米片的正静电环境为高效分离 CO2/CH4 提供了潜在的前景。
更新日期:2024-09-21
中文翻译:
通过在混合基质膜中的纳米片构建正静电环境以实现高效的 CO2 分离
混合基质膜 (MMM) 在克服权衡效应方面已显示出优势,但在多功能填料的设计中仍迫切需要提高 CO2 分离性能。为了克服 MMMs 中的权衡效应,合理设计具有 CO2 分子选择性识别的填料是一种有效的策略。合成微孔纳米片 Qc-5-Cu 并将其掺入 Pebax MH 1657 (Pebax) 中,以制备用于从 CH4 中有效分离 CO2 的 MMM。Qc-5-Cu 中孔隙表面芳香环的 H 原子构建了正静电环境,显著提高了 MMMs 的 CO2/CH4 分离性能。一方面,MMMs 中构建的正静电环境通过静电吸引吸引 CO2 分子带负电荷的 O 原子,从而有效加速了 CO2 的传输。另一方面,正静电环境为防止 CH4 运输建立了选择性屏障,在 MMMs 中实现了高 CO2/CH4 选择性。与纯 Pebax 膜相比,Pebax/Qc-5-Cu-0.5 MMM 的 CO2 渗透性显著提高了 99.52% (934.24 Barrer),CO2/CH4 选择性显著提高了 37.64% (25.01)。在 MMMs 中构建纳米片的正静电环境为高效分离 CO2/CH4 提供了潜在的前景。