当前位置:
X-MOL 学术
›
Process Saf. Environ. Prot.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Molybdenum as cathode materials: Paving the way for sustainable biohydrogen production in microbial electrolysis cells
Process Safety and Environmental Protection ( IF 6.9 ) Pub Date : 2024-09-14 , DOI: 10.1016/j.psep.2024.09.032 M.B. Bahari, C.R. Mamat, A.A. Jalil, N.S. Hassan, M.H. Sawal, S. Rajendran, M.N.H.Z. Alam
Process Safety and Environmental Protection ( IF 6.9 ) Pub Date : 2024-09-14 , DOI: 10.1016/j.psep.2024.09.032 M.B. Bahari, C.R. Mamat, A.A. Jalil, N.S. Hassan, M.H. Sawal, S. Rajendran, M.N.H.Z. Alam
Microbial electrolysis cells (MECs) have garnered significant attention for their potential in sustainable hydrogen production and wastewater treatment. Due to their unique electrochemical properties, molybdenum-based compounds have emerged as promising candidates among various cathode materials. This review explores the multifaceted role of molybdenum in MECs, focusing on its catalytic performance, synthesis strategies, and potential for enhancing H2 evolution reactions. Various molybdenum-based materials, including molybdenum disulfide (MoS2 ), molybdenum phosphide (MoP), molybdenum carbide (Mo2 C), and nickel-molybdenum alloys (NiMo), are discussed in terms of their synthesis methods, electrochemical performance, and scalability. Notably, molybdenum-based electrodes have demonstrated comparable or superior catalytic activity to traditional platinum-based cathodes, highlighting their potential as cost-effective alternatives. Future directions in this field include further optimization of synthesis methods, exploration of new molybdenum-based cathodes, mechanistic understanding of catalytic activity, and addressing scalability and stability challenges. Overall, molybdenum-based materials present promising opportunities for advancing MECs technology, driving progress toward sustainable hydrogen production and wastewater treatment.
中文翻译:
钼作为正极材料:为微生物电解槽中的可持续生物氢生产铺平道路
微生物电解槽 (MEC) 因其在可持续制氢和废水处理方面的潜力而受到广泛关注。由于其独特的电化学性质,钼基化合物已成为各种正极材料中很有前途的候选材料。本文探讨了钼在 MEC 中的多方面作用,重点介绍了其催化性能、合成策略和增强 H2 析出反应的潜力。讨论了各种钼基材料,包括二硫化钼 (MoS2)、磷化钼 (MoP)、碳化钼 (Mo2C) 和镍钼合金 (NiMo),从它们的合成方法、电化学性能和可扩展性方面进行了讨论。值得注意的是,钼基电极已显示出与传统铂基阴极相当或更好的催化活性,凸显了它们作为具有成本效益的替代品的潜力。该领域的未来方向包括进一步优化合成方法、探索新的钼基阴极、催化活性的机理理解以及解决可扩展性和稳定性挑战。总体而言,钼基材料为推进 MEC 技术提供了广阔的机会,推动了可持续制氢和废水处理的进步。
更新日期:2024-09-14
中文翻译:
钼作为正极材料:为微生物电解槽中的可持续生物氢生产铺平道路
微生物电解槽 (MEC) 因其在可持续制氢和废水处理方面的潜力而受到广泛关注。由于其独特的电化学性质,钼基化合物已成为各种正极材料中很有前途的候选材料。本文探讨了钼在 MEC 中的多方面作用,重点介绍了其催化性能、合成策略和增强 H2 析出反应的潜力。讨论了各种钼基材料,包括二硫化钼 (MoS2)、磷化钼 (MoP)、碳化钼 (Mo2C) 和镍钼合金 (NiMo),从它们的合成方法、电化学性能和可扩展性方面进行了讨论。值得注意的是,钼基电极已显示出与传统铂基阴极相当或更好的催化活性,凸显了它们作为具有成本效益的替代品的潜力。该领域的未来方向包括进一步优化合成方法、探索新的钼基阴极、催化活性的机理理解以及解决可扩展性和稳定性挑战。总体而言,钼基材料为推进 MEC 技术提供了广阔的机会,推动了可持续制氢和废水处理的进步。