当前位置: X-MOL 学术Inform. Fusion › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Deep learning techniques for hand vein biometrics: A comprehensive review
Information Fusion ( IF 14.7 ) Pub Date : 2024-09-27 , DOI: 10.1016/j.inffus.2024.102716
Mustapha Hemis, Hamza Kheddar, Sami Bourouis, Nasir Saleem

Biometric authentication has garnered significant attention as a secure and efficient method of identity verification. Among the various modalities, hand vein biometrics, including finger vein, palm vein, and dorsal hand vein recognition, offer unique advantages due to their high accuracy, low susceptibility to forgery, and non-intrusiveness. The vein patterns within the hand are highly complex and distinct for each individual, making them an ideal biometric identifier. Additionally, hand vein recognition is contactless, enhancing user convenience and hygiene compared to other modalities such as fingerprint or iris recognition. Furthermore, the veins are internally located, rendering them less susceptible to damage or alteration, thus enhancing the security and reliability of the biometric system. The combination of these factors makes hand vein biometrics a highly effective and secure method for identity verification.

中文翻译:


手静脉生物识别技术的深度学习技术:全面回顾



生物识别认证作为一种安全高效的身份验证方法,已经引起了极大的关注。在多种模式中,手静脉生物识别技术,包括指静脉、手掌静脉和手背静脉识别,由于其准确性高、易伪造性低和非侵入性而具有独特的优势。手内的静脉模式非常复杂且因人而异,使其成为理想的生物识别标识符。此外,手静脉识别是非接触式的,与指纹或虹膜识别等其他方式相比,提高了用户的便利性和卫生性。此外,静脉位于内部,使其不易受到损坏或更改,从而提高了生物识别系统的安全性和可靠性。这些因素的结合使手静脉生物识别技术成为一种高效且安全的身份验证方法。
更新日期:2024-09-27
down
wechat
bug