当前位置:
X-MOL 学术
›
Prog. Mater. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Bioengineering nanomaterials for tumor therapy and anti-metastasis
Progress in Materials Science ( IF 33.6 ) Pub Date : 2024-09-19 , DOI: 10.1016/j.pmatsci.2024.101375 Junjie Cheng, Yuanbo Pan, Jianhua Zou, Miya Zhang, Yang Zhu, Yangzhong Liu, Xiaoyuan Chen
Progress in Materials Science ( IF 33.6 ) Pub Date : 2024-09-19 , DOI: 10.1016/j.pmatsci.2024.101375 Junjie Cheng, Yuanbo Pan, Jianhua Zou, Miya Zhang, Yang Zhu, Yangzhong Liu, Xiaoyuan Chen
Tumor metastasis, responsible for the majority of cancer-related mortality, represents a critical challenge to effective treatment. Despite the deployment of various therapeutic strategies, difficulties remain due to tumor heterogeneity and the complexity of the biological microenvironment. Functional nanomaterials possess unique acoustic, optical, electromagnetic, and thermal properties, playing critical tools in the treatment of tumors and holding substantial potential for improving therapeutic outcomes. However, prior to clinical implementation, critical factors such as dispersion, targeting, immunogenicity, in vivo biodistribution, and biosafety must be thoroughly evaluated. In this review, we focus on the recent advancements in the use of bioengineered nanomaterials for treating tumor metastasis. We emphasize the design, composition, and construction methods of these nanomaterials, along with their mechanisms of action and notable breakthroughs in anti-metastasis therapy. Furthermore, we outline early detection techniques for tumor metastasis. By elucidating the significant potential of these nanomaterials, the associated challenges and prospects for clinical translation are discussed as well, with the aim of encouraging high-quality research and promoting the potential clinical applications of bioengineered nanomaterials in the fight against tumor metastasis.
中文翻译:
用于肿瘤治疗和抗转移的生物工程纳米材料
肿瘤转移是导致大多数癌症相关死亡的原因,是有效治疗的关键挑战。尽管部署了各种治疗策略,但由于肿瘤异质性和生物微环境的复杂性,困难仍然存在。功能性纳米材料具有独特的声学、光学、电磁和热学特性,在肿瘤治疗中发挥着关键作用,在改善治疗效果方面具有巨大潜力。然而,在临床实施之前,必须彻底评估分散、靶向、免疫原性、体内生物分布和生物安全性等关键因素。在这篇综述中,我们重点介绍了使用生物工程纳米材料治疗肿瘤转移的最新进展。我们强调这些纳米材料的设计、组成和构建方法,以及它们的作用机制和抗转移治疗中的显着突破。此外,我们概述了肿瘤转移的早期检测技术。通过阐明这些纳米材料的巨大潜力,还讨论了临床转化的相关挑战和前景,旨在鼓励高质量的研究并促进生物工程纳米材料在对抗肿瘤转移方面的潜在临床应用。
更新日期:2024-09-19
中文翻译:
用于肿瘤治疗和抗转移的生物工程纳米材料
肿瘤转移是导致大多数癌症相关死亡的原因,是有效治疗的关键挑战。尽管部署了各种治疗策略,但由于肿瘤异质性和生物微环境的复杂性,困难仍然存在。功能性纳米材料具有独特的声学、光学、电磁和热学特性,在肿瘤治疗中发挥着关键作用,在改善治疗效果方面具有巨大潜力。然而,在临床实施之前,必须彻底评估分散、靶向、免疫原性、体内生物分布和生物安全性等关键因素。在这篇综述中,我们重点介绍了使用生物工程纳米材料治疗肿瘤转移的最新进展。我们强调这些纳米材料的设计、组成和构建方法,以及它们的作用机制和抗转移治疗中的显着突破。此外,我们概述了肿瘤转移的早期检测技术。通过阐明这些纳米材料的巨大潜力,还讨论了临床转化的相关挑战和前景,旨在鼓励高质量的研究并促进生物工程纳米材料在对抗肿瘤转移方面的潜在临床应用。