当前位置: X-MOL 学术AlChE J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Enhancing HER catalyst screening of modified MXenes through DFT and machine learning integration
AIChE Journal ( IF 3.5 ) Pub Date : 2024-09-30 , DOI: 10.1002/aic.18618
Hui Xu, Wenhao Lv, Shaojie Yang, Shuna Yang, Yawei Liu, Feng Huo

MXenes doped with non-metallic and transition metal elements exhibit remarkable potential as catalysts in the hydrogen energy. Nonetheless, efficiently identifying viable materials from a vast array of candidates remains a formidable challenge. Here, we conducted density functional theory (DFT) calculations to obtain the hydrogen adsorption free energy (GH) of 78 types of doped TiVCO2 MXene catalysts. Then we employed machine learning models to categorize the GH values of the 78 catalysts, resulted in an accurate model which only uses 7 readily available elemental features but has an impressive accuracy of 93.6%. Our model successfully predicting 5 TiVCO2 catalysts doped with S with superior performance, subsequently validated through DFT calculations. This classification methodology not only evaluates the range of GH effectively but also facilitates qualitative prediction and screening of catalysts, presenting a novel approach for catalytic systems with limited available data.

中文翻译:


通过 DFT 和机器学习集成增强改性 MXenes 的 HER 催化剂筛选



掺杂非金属和过渡金属元素的 MXenes 在氢能中表现出作为催化剂的巨大潜力。尽管如此,从大量候选材料中有效地识别可行的材料仍然是一项艰巨的挑战。在这里,我们进行了密度泛函理论 (DFT) 计算,获得了 78 种掺杂 TiVCO 2 MXene 催化剂的氢吸附自由能 ( GH )。然后,我们采用机器学习模型对 GH 78 种催化剂的值进行分类,从而得到一个准确的模型,该模型仅使用 7 个现成的元素特征,但具有令人印象深刻的 93.6% 的准确率。我们的模型成功预测了 5 种掺杂 S 的 TiVCO 2 催化剂,性能优异,随后通过 DFT 计算进行了验证。这种分类方法不仅评估 GH 了有效范围,还促进了催化剂的定性预测和筛选,为可用数据有限的催化系统提供了一种新方法。
更新日期:2024-09-30
down
wechat
bug