当前位置:
X-MOL 学术
›
Comput. Aided Civ. Infrastruct. Eng.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
A cooperative methodology for multi‐roller automation in pavement construction considering trajectory planning and collaborative operation
Computer-Aided Civil and Infrastructure Engineering ( IF 8.5 ) Pub Date : 2024-09-29 , DOI: 10.1111/mice.13347 Difei Wu, Sheng Zhong, Man Io Leong, Yishun Li, Boyuan Tian, Chenglong Liu, Yuchuan Du
Computer-Aided Civil and Infrastructure Engineering ( IF 8.5 ) Pub Date : 2024-09-29 , DOI: 10.1111/mice.13347 Difei Wu, Sheng Zhong, Man Io Leong, Yishun Li, Boyuan Tian, Chenglong Liu, Yuchuan Du
Intelligent compaction, particularly fully autonomous compaction, has emerged as a widely accepted innovative technology for enhancing compaction quality and efficiency. When multiple rollers are concurrently engaged in compaction within the same region, the trajectory planning for each roller and cooperative control become pivotal factors in ensuring efficient and safe compaction. This paper presents a comprehensive methodology framework for achieving safe and efficient cooperative operations in multi‐roller automation application. Initially, conventional rollers are retrofitted with autonomous functionality, allowing them to automatically follow preset trajectories through a tracking control algorithm. A trajectory planning method is then proposed, tailored for multi‐roller operations. Subsequently, a series of cooperative control strategies are outlined to determine the optimal timing for executing compaction tasks. Additionally, a cooperative control strategy is proposed for multi‐roller operations, known as “move forward and backward together” control, which ensures the rollers initiate and cease movement without colliding. Finally, the proposed trajectory planning method and cooperative control strategies are validated through field tests conducted on a 100‐m‐long, 12‐m‐wide compaction test site. These tests include single‐roller trials, two‐roller‐in‐a‐row experiments, and multi‐roller cooperation tests. The average trajectory tracking error is maintained below 15 cm, and the effectiveness of the control strategies is demonstrated.
中文翻译:
考虑轨迹规划和协同操作的路面施工多压路机自动化协作方法
智能压实,特别是全自动压实,已成为广泛接受的提高压实质量和效率的创新技术。当多个压路机在同一区域内同时进行压实时,各个压路机的轨迹规划和协同控制成为确保高效、安全压实的关键因素。本文提出了一个全面的方法框架,用于在多辊自动化应用中实现安全高效的协作操作。最初,传统滚筒经过自主功能改造,使其能够通过跟踪控制算法自动遵循预设轨迹。然后提出了一种针对多滚轮操作量身定制的轨迹规划方法。随后,概述了一系列协作控制策略,以确定执行压实任务的最佳时机。此外,还提出了一种用于多滚轮操作的协作控制策略,称为“一起前进和后退”控制,可确保滚轮启动和停止运动而不会发生碰撞。最后,通过在100米长、12米宽的压实试验场上进行的现场测试,对所提出的轨迹规划方法和协同控制策略进行了验证。这些测试包括单滚轮试验、双滚轮连续实验和多滚轮配合测试。平均轨迹跟踪误差保持在15 cm以下,证明了控制策略的有效性。
更新日期:2024-09-29
中文翻译:
考虑轨迹规划和协同操作的路面施工多压路机自动化协作方法
智能压实,特别是全自动压实,已成为广泛接受的提高压实质量和效率的创新技术。当多个压路机在同一区域内同时进行压实时,各个压路机的轨迹规划和协同控制成为确保高效、安全压实的关键因素。本文提出了一个全面的方法框架,用于在多辊自动化应用中实现安全高效的协作操作。最初,传统滚筒经过自主功能改造,使其能够通过跟踪控制算法自动遵循预设轨迹。然后提出了一种针对多滚轮操作量身定制的轨迹规划方法。随后,概述了一系列协作控制策略,以确定执行压实任务的最佳时机。此外,还提出了一种用于多滚轮操作的协作控制策略,称为“一起前进和后退”控制,可确保滚轮启动和停止运动而不会发生碰撞。最后,通过在100米长、12米宽的压实试验场上进行的现场测试,对所提出的轨迹规划方法和协同控制策略进行了验证。这些测试包括单滚轮试验、双滚轮连续实验和多滚轮配合测试。平均轨迹跟踪误差保持在15 cm以下,证明了控制策略的有效性。