当前位置: X-MOL 学术Des. Codes Cryptogr. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Asymptotically optimal aperiodic quasi-complementary sequence sets based on extended Boolean functions
Designs, Codes and Cryptography ( IF 1.4 ) Pub Date : 2024-09-28 , DOI: 10.1007/s10623-024-01501-y
Bingsheng Shen, Tao Yu, Zhengchun Zhou, Yang Yang

Quasi-complementary sequence sets (QCSSs) are important in modern communication systems as they are capable of supporting more users, which is desired in applications like MC-CDMA nowadays. Although several constructions of aperiodic QCSSs have been proposed in the literature, the known optimal aperiodic QCSSs have limited length or have large alphabet. In this paper, based on extended Boolean functions, we present two constructions of aperiodic QCSSs with parameters \((q(p_0-1),q,q-t,q)\) and \((q^m(p_0-1),q^m,q^m-t,q^m)\), where \(q\ge 3\) is an odd integer, \(p_0\) is the minimum prime factor of q. The proposed constructions can generate asymptotically optimal or near-optimal aperiodic QCSSs with new parameters.



中文翻译:


基于扩展布尔函数的渐近最优非周期拟互补序列集



准互补序列集 (QCSS) 在现代通信系统中非常重要,因为它们能够支持更多用户,这正是当今 MC-CDMA 等应用所需要的。尽管文献中已经提出了非周期性 QCSS 的几种结构,但已知的最佳非周期性 QCSS 的长度有限或具有较大的字母表。在本文中,基于扩展布尔函数,我们提出了两种带有参数\((q(p_0-1),q,qt,q)\)\((q^m(p_0-1)) 的非周期 QCSS 结构, q^m,q^mt,q^m)\) ,其中\(q\ge 3\)是奇数, \(p_0\)q的最小素因数。所提出的结构可以生成具有新参数的渐近最优或接近最优的非周期 QCSS。

更新日期:2024-09-28
down
wechat
bug